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Abstract - In this paper, a scheme which is composed of two Kalman Filters is used to estimate the pose of a 

mobile platform whose kinematic model of odometer is subjected to systematic errors. Systematic errors of 

kinematic model of odometer which are considered to be soft-failure are modelled as an unknown disturbance to 

plant model of Kalman Filter. Using the fact that bias pattern in filter innovations can be expressed as a linear 

function of these constant disturbance inputs, they are estimated via LSE and output of Kalman Filter is improved 

using these estimated unknown inputs. 
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1. Introduction 
Localization of a mobile robot is a fundamental problem in robotics research. Several solutions are 

proposed for this specific problem; many of them depend on sensor fusion to cope with limitations of a 

single sensor modality; accelerometer, gyroscope, compass, odometer. When these sensors are used 

together, it is evident that ever growing error accumulates in the estimated position. One can reason that 

when sensors which monitors internal state of mobile robot are well calibrated, the frequency of absolute 

measurements which are required to reset these additive errors, may be reduced to a minimum. 

In this paper, position of a differential-drive mobile robot is estimated with a Kalman Filter (KF) 

scheme which is robust against constant disturbances. The robust characteristic of this filter-scheme can 

be best explained with a reference to a regular Kalman Filter. Regular KF diverges when biased errors are 

present in plant model and it cannot track state of system, on the contrary the KF scheme that is used in 

this paper, is able to recover from false pose belief under similar conditions. In this paper, this KF scheme 

which is described somewhere else, in reference Bar-Shalom et.al, is specially tailored to handle biased 

errors which stems from inaccurate kinematic model of odometer. In this KF-scheme, these 

systematic/biased errors are modelled as an additional unknown disturbance inputs to a regular KF.  

Estimation of these unknown disturbance inputs is based on the fact that when same input commands i.e. 

unknown disturbance is issued multiple times in a time window, biased terms in measurement innovation 

can be expressed as a linear function of these unknown disturbance inputs which are constant for that 

specific time window. Hence this problem can be viewed as a Least Squares Estimation (LSE) problem 

and it can be solved to estimate unknown disturbance inputs. Then, original command input vector is 

adjusted with a correction term computed with LSE as shown by Bar-Shalom et.al. Thus two KF-scheme 

is able track states of plant safely for long period of times, and it needs less absolute measurements than a 

regular KF. 

The main contribution of this paper is to extend the KF scheme described in reference Bar-Shalom 

et.al. such that it can handle inaccurate kinematic model of odometer of a mobile platform. Error sources 

which are expressed in the form of scale factors are studied and an approximate parametric form of the 

input gain matrix of these unknown input commands are derived. Finally, plant models developed in this 

study and measurement model is combined under the framework e.g. the so-called two KF scheme. The 

final form of solution is a particular realization of what is described in reference Bar-Shalom et.al, to deal 

with odometer inaccuracy, specifically. This final solution and the problem defined here describes a 

special test environment for odometer error detection and identification. 
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The rest of the paper is organized as follows. In part two, related works are reviewed. In part three, 

localization problem and the goal of this study is defined. In part four, a solution to the problem which is 

described in part three, is sought. In part five, simulation results are discussed. Finally, in part six, 

conclusions and discussions are presented. 

 

2. Related Works 
Classification of odometer calibration attempts can be made as follows: Off-line / On-line calibration 

methods; Geometry based calibration methods; Sensor fusion based calibration methods; another 

classification can be done according to the type of error considered: calibration of Systematic/Non-

systematic errors. In reference, Chong and Kleeman (1997) odometer error model is developed and in 

reference Gianluca et.al. (2005), off-line calibration method is developed for odometer. In reference, 

Mondal et.al. (2008), Terminal Iterative Learning Control is used to estimate the systematic error 

parameters of a mobile robot.  In reference Martinelli et.al. (2007) Augmented Kalman filter is used to 

localize a mobile robot and to estimate the systematic error parameters simultaneously.  In references, von 

der Hardt et.al. (1998), Rudolph (2003), a multi-sensor system i.e. odometer, gyroscope and compass, is 

calibrated by using redundant data. In reference Kelly (2004) analytical expression is derived for 

propagation of odometer errors and a calibration technique is developed. In reference Goel et.al. (2000), 

Hashimoto et.al. (2003), a multi-model approach is taken to model hard failure, noise failure and scale 

failure of sensors of a mobile robot. In reference Hashimoto (2001) KF is used within a framework of 

Interacting Multiple Models to identify and detect hard failure of sensors of a mobile robot. The KF 

scheme that is used in this study can be considered as a tool which detects and corrects the soft-failure i.e. 

scale failure of the odometer 

 

3. Problem Definition: Expression for Soft-Failure of Mobile Robot Odometer 
In this section, localization problem described; mobile robot is localized using bearing and range 

measurements to landmarks and it is assumed that landmark correspondence is known. This scenario is 

used to localize a mobile robot and estimate the odometer errors simultaneously. For this purpose, a 

simple plant model is used and state space model of the plant is expressed as linear combination of states, 

command input, command noise and disturbance inputs. Discrete-time state-space model that matches the 

continuous-time model of plant are given in Equation (1) where sampling time is kk ttt  1  and k  

denotes time step. 
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 Tkkkk yx x  is the state vector of the mobile robot;  kk yx ,  are the x  and ates y- coordin and  k

is the heading angle of the mobile robot at time k . un is a zero-mean Gaussian noise with covariance 

matrix R . Displacement of mobile robot is measured with respect to a local coordinate system attached to 

mobile platform. The transformation matrix that maps this displacement to the global Cartesian 

coordinate can be written as:   
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Velocity of mobile platform can be written as: 
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Angular velocity of mobile robot can be written as 
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R , L ¸ D  are the scale factor of right, left wheel and distance between wheels, respectively. Further, 

these translational and angular speeds can be decomposed into a nominal component  kwv, and error 

component kdwdv, . Nominal speed components are computed using nominal values of the geometry of 

the mobile platform and error components represents disturbance input due to deviations in mobile 

platform dimensions. Translational velocity can be written as: 

 

kkk dvvv    (5) 

 

where nominal translational velocity of the tracking point is computed with
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Deviations from the nominal velocity can be expressed in terms of input command and scale factors 

which are presently unknown. Translational disturbance velocity is: 
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Similarly, angular velocity of the mobile base is divided into two components: 
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Nominal angular velocity is given below:

 

D

vv kLkR

k

,, 
   (9) 

 

Deviation of angular velocity is computed as: 
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Vector kU  is defined as speed components in x-/y- and s -direction at time k , it can be written as 
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Translational and angular speed values computed with real geometry parameters are substituted into kU  

and each elements of kU  are examined in the sequel. 
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Using first-order Taylor series expansion and ignoring higher order error terms, one can write a simple 

equation for the first element of vector kU : 1,kU . 

 

  kkkkkkkk dvdwv
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Similarly, one can write the following equation for 2,kU  

  kkkkkkkk dvdwv
t

vU  sincos
2

sin2, 
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3,kU can simply be written as:

 

kkk dwwU 3,  (15) 

 

Vector kU  can be decomposed into a nominal component and an error component kdUU , :

 

kkk dUUU   (16) 

 

where nominal component is:
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and error component can be written in matrix form as:

 

kkk t duGdUdSk   (18) 

 

where input gain matrix G of disturbance input can be written as: 
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Disturbance input vector can be written as: 
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 T
kkk dwdvdu  (20) 

 

The state vector kxΔ is computed using plant model with nominal parameters is written as:

 

 Tkkkk yx xΔ  (21) 

 

Plant model of regular filter e.g. filter which does not include terms resulting from error in odometer 

modelling can be written as 

 

ukkkk nTxΔFxΔ 1
  (22) 

 

Plant model of the proposed filter which takes into account the error in odometer model can be written as 

 

ukkkkkk nTduGΔxFΔx 1   (23)

  

The measurement model derived by Thrun et.al is used in this paper; range and bearing 

measurements to thi  point landmark at time k with known correspondence. One can refer to Thrun et.al to 

see the algorithm for localization of mobile robot with range and bearing measurements to nearby point 

landmark with known correspondence. Note that the plant model that is being used here is different from 

the one derived by Thrun et.al, so the plant model and Jacobian of the plant model given by Thrun et.al. 

must be replaced before implementing the algorithm.  

  

4. Estimation of Unknown Odometer Errors 
In this section, equations of the linearized KF scheme are presented. While linearized KF scheme is 

being designed, the style, notation and equations in reference Bar-Shalom et.al are adopted. Note that 

when Extended Kalman Filter is used in place of a Kalman Filter, all plant and measurements matrices 

must be replaced with the corresponding Jacobian of those nonlinear equations. However, these Jacobian 

matrices must be evaluated along the nominal trajectory computed with the only real filter; that is the 

regular Extended Kalman Filter and error state vector is propagated as a separate data sequence without 

updating the nominal trajectory. Otherwise, the derivation of the linearized KF scheme is not possible, 

because many terms in the recursion formula of state equation for both regular and filter scheme are 

considered to be equal to each other. In the following discussion underscore symbol of system matrices 

are dropped for simplicity. Consider the system with state equation given in (22). The observations are 

 

zkkk nΔxHΔz   111  (24) 

 

zn  is zero mean Gaussian noise, with covariance matrix Q . When the state of the plant is estimated with 

regular filter, the plant model of linearized Kalman Filter is given in equation [22]. kx denotes the state 

which is estimated by using regular filter. The recursion of these state estimation for one cycle, can be 

written as 

 

kkkukkkk zΔKFnTxΔΦxΔ 



ˆˆ

1  (25) 

 

where

 

 kkkk HKIFΦ   (26) 
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At onset time of time window, )( sc  , define: 



  scsc xx ˆˆ . Recursions of state estimation for multiple 

cycles, until time )1( k  can be written as 

 

  

































k

scj
ujjjj

jk

m
mksc

sck

m
mkk nTzΔKFΦxΔΦxΔ

)1(

0

)(

0
1

ˆˆ              )1(),....,(  csck     (27) 

 

If the unknown disturbance inputs are available to the filter, recursion for multiple cycles until time 

)1( k can be written as: 
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It is observed that the recursions for these filters are similar to each other except the additional term 

due to unknown disturbance input due to systematic errors in odometer model. The measurement 

innovation of the filter with unknown disturbance input is a zero mean white sequence given as:   
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  1111 x̂ΔHzΔυ  (29) 

 

The measurement innovations of the regular filter are

 

 
RGkkkk



  1111 x̂ΔHzΔυ  (30) 

 

When Equation (29) and (30) are compared, it is seen that the innovations (30) of the regular filter 

can be expressed as a white noise sequence plus a constant term due to the unknown disturbance inputs. 
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UDIk 1zΔ  and  

RGk 1zΔ  are considered to be equal because both filter uses the same range/bearing 

sensor measurement and both of them are linearized around the same nominal trajectory. Equation (31) 

can be imagined as a convolution integral where the effect of unknown input is shifted from the time it is 

applied to the time step where its output can be observed. 
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When disturbance input is assumed to be constant over the interval,  csc ),....,(  , that is to say:

 

duduk         )1(),....,(  csck  (34) 

 

Yields 
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Measurement innovation of regular filter  
RGk 1υ can be written as a linear function of unknown 

disturbance input du  with additive white noise  
UDIk 1υ . Based on (35), the disturbance input can be 

estimated via Least Squares from 

 

ynΨduy         

RGr


















Δυ

Δυ

y 
1

    



















rΨ

Ψ

Ψ 
1

 (36) 

 

where y is the stacked measurement vector, and Ψ   is the measurement matrix and where r  is the total 

number of landmark that is observed in the sliding time window. Noise yn , whose components are the 

innovations, is zero mean with block diagonal covariance matrix. The batch form estimate of disturbance 

input and the resulting covariance matrix are 

 

  ySΨΨSΨdu
111  TT             11  ΨSΨL

T  (37) 

 

The method used above which estimates the unknown disturbance inputs resulting from odometer 

errors is approximate. Because the nonlinear KF scheme is linearized around the trajectory computed with 

regular linearized KF. It is obvious that regular linearized KF and linearized KF scheme trajectories don’t 

match. Therefore, all Jacobian matrices e.g. Jacobian matrices of filter scheme are approximate so an 

iterative approach with the following equations are proposed. 
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Table 1. Simulation Parameters. 

 

Prm MV Prm RV MV Prm RV MV 

RW-D 10.0 RW-S 1.020 1.000 OLN 1/20 1/10 

LW-D 10.0 LW-S 1.000 1.000 OAN 1/30 1/20 

B-D 100.0 B- S 1.020 1.000 LRN 50  50 

L-R 800.0    LAN pi/90 pi/60 

L/L/L/R     : Linear/Laser/Left/Right 

A                :Angular 

D/D      :Diameter/Distance 

R/R/M/V   :Range/ Real/Model/Value 

W :Wheel 

B  :Base 

N  : Noise 

O :Odometer 

S  :Scale 

All units are in centimeters 
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Fig. 1. A typical simulation; blue: commanded trajectory: black line: true trajectory, full circles: landmarks green 

RG-KF output; Color lines KF-UDI. 

 

5. Simulations 
A Matlab program is written to simulate the method on computer. Simulation parameters and a 

typical simulation result is given in Table-I and Figure-1 respectively. Odometer noise is modelled as 

fraction of travelled distance.  Analysis of simulation parameters reveals that KF scheme is effective 

when range and bearing sensor is not very accurate. When range/bearing sensor is not accurate, the bias 

patterns in measurement innovation persist. This helps the filter estimating the correction term. 

Otherwise, bias pattern on measurement innovation diminishes and LSE method is not as successful as it 

is expected. This suggests that the filter scheme is most effective when sensing device’s accuracy is low 

and landmarks are sparse. Note that past trajectories are also corrected with this filter scheme. 

Furthermore, by collecting different mobile robot commands and estimating the disturbance input one can 

proceed to compute the odometer scale factors online.  

 

6. Conclusion 
In this paper a linearized KF scheme is used to track the poses of a mobile platform. Systematic 

errors of odometer which are ignored in mathematical model is estimated online in batch form and then 

compensated by the linearized KF scheme. This eliminates the frequent need of resetting of the error 

which accumulates in position estimation and need for an accurate calibration of the sensors. This work 

can be extended to compute the scale factor online when adequate number of diverse disturbance inputs is 

collected. Finally the batch estimation algorithm can be replaced with a sequential estimation algorithm 

which suits for online odometer error estimation better. 
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