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Abstract- In this work, we study a leader-follower consensus protocol where both leaders and followers negotiate
their states over a stochastically-switching network. The model incorporates the phenomenon of numerosity, which
limits the perception of exact numbers. We derive a closed form expression for the asymptotic convergence factor
that provides a necessary and sufficient condition for convergence and is used to study the expected decay rate of
disagreement among agents. These results are validated with Monte Carlo simulations and we explore the dependence
of the asymptotic convergence factor on model parameters using numerical simulations. This system can be used to
model decision making in a representative democracy, where representatives negotiate among themselves and drive the
opinion of the population.
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1 Introduction
Collective decision making can be modeled as a consensus protocol, defined as an algorithm for a multi-
agent system with an equilibrium when all agents hold a common state. The wide range of engineering
and science applications for consensus protocols, such as unmanned aerial vehicles (Beard et al. 2002) and
autonomous underwater vehicles (AUVs) (Maczka et al. 2009), is supported by a large theoretical literature
exploring these problems (Ren & Beard 2007, Abaid & Porfiri 2011, Pereira 2010, Abaid & Porfiri 2012).
Within this literature, conditions to reach consensus have been studied varying the underlying network of
agent communication. Networks may be static (Sipahi & Acar 2008) or switching, and the latter case may be
further divided into those updating from a deterministic sequence (Ren & Beard 2007) or from realizations of
a random variable (Abaid & Porfiri 2011). Within the consensus literature, closed form results for consensus
conditions and convergence speed are limited to a small set of known topologies, for example, Erdos-Renyi
random networks in (Pereira 2010) and numerosity-constrained (NC) networks in (Abaid & Porfiri 2011,
2012).

In social systems, a variety of constraints restricts the communication between individuals from all-to-all.
Among these constraints, the perception of numbers impacts many social species, including fish (Tegeder &
Krause 1995) and humans (Piazza & Izard 2009). The so-called numerosity constraint, defined in (Piazza &
Izard 2009), limits the perception of exact numbers across species. Another striking feature of social groups
is leadership by an individual or subset of the group, studied for example in fish schools (Couzin et al.
2011). This group behavior may be modeled as leader-follower consensus, which partitions the agents into
two types: leaders and followers (Abaid & Porfiri 2012, Xiaohong & Qinghe 2013). In general, the leaders
have access to more information and attempt to drive the entire system to a desired common state through
their updating protocol. We comment that the leaders whose states are time-variant and update dynamically
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according to a consensus protocol are rarely considered in the literature (Song et al. 2013) and closed form
expressions relating the consensus among leaders to that of the whole system are particularly absent.

In this paper, we study a leader-follower consensus protocol over a stochastically-switching network to
model the scenario, where individuals in social groups share information with a dynamic and stochastic set
of peers, inspired by the numerosity constraint in biological systems. In (Abaid & Porfiri 2012), the au-
thors studied a similar model, where the leaders have a common state which is constant with time. In this
work, the leaders states are time-variant and update as they interact with other leaders, while the followers
interact with any other agent irrespective of leader or follower. We define the dynamic leaders to be more
influential than followers as they only negotiate with a subset of the total group, while their states propagate
through the population via the directed interactions they may have with the followers. This problem models
a representative democracy, where policies are decided upon by a subset of representatives whose decisions
are disseminated to the entire populace (Mezey 2008). This idealized system incorporates the ultimate goal
of democracy, in that consensus among representatives is required for making public policy and consen-
sus among all agents represents a populace whose opinions align with its representatives. In addition, we
incorporate the numerosity constraint, which is known to impact decision making across social species.

Here, we study such a system with dynamic leaders and establish necessary and sufficient conditions for
consensus in terms of the mean square stability of the disagreement among agents. A closed form expression
for the asymptotic convergence factor, which measures the rate of convergence to consensus, is established.
It is important to note that, in (Abaid & Porfiri 2012), the state of consensus of the entire system was fixed by
the set leaders’ common state, whereas in this work the leaders’ states start from random initial conditions
and converge over time.

2 Problem Statement
We consider a system having N agents, with l agents serving as leaders and f agents as followers, where
f , l ≥ 3 and l+ f = N. The sets F = {1,2, · · · , f}, L = { f +1, f +2, · · · ,N}, and N =F ∪L are used to
denote the indices of followers, leaders, and total number of agents, respectively. The agents communicate
over a stochastically-switching directed network which is numerosity constrained (Abaid & Porfiri 2011)
during discrete time steps. At each time step, agents communicate with n randomly selected neighbors
where n ∈ {1, . . . ,min{ f −1, l−1}} is constant over all time steps and agents in the system. The followers
are assumed to communicate with n neighbors which are selected from both leaders and followers, whereas
the leaders communicate with n other leaders.

The communication network, at each time step k ∈ Z+, is defined through the graph Laplacian Lk ∈
RN×N . The first f rows of Lk i.e. row i ∈ F , define the followers’ interaction graph, where each row
represents how a follower is connected to the rest of the (N− 1) agents in the system. The last l rows of
Lk represent the leaders’ interaction graph, i.e. when i ∈ L , and show the connections are restricted to
the leaders. Each row of Lk has a diagonal entry equal to n and off-diagonal entries comprising n “−1’s”
and N− n− 1 “0’s”, by definition. Specifically, when i ∈F , −1 can appear along the N− 1 off-diagonal
positions with equal probability, whereas when i ∈ L , the first f columns are 0’s and the appearance of
−1’s along the remaining l− 1 off-diagonal positions is equally likely. In other words, the first f columns
in the leaders’ sub-system has all the elements equal to zero, since leaders do not receive information from
the followers. Due to unidirectional communication among the agents, Lk is not necessarily symmetric, but
it has zero row sum. Thus, Lk1N = 0N , where the vector 1N ∈RN×1 have all entries equal to 1 and the vector
0N ∈ RN×1 have all entries equal to zero.

At time step k, the agents’ states are given by the vector xk = [x f
k

T
xl

k
T
]T ∈ RN×1, where x f

k ∈ R f×1

represents the state vector for the followers and xl
k ∈ Rl×1 represents the state vector for the leaders. The
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state vector of the entire system is updated according to the discrete-time consensus protocol

xk+1 = (IN−E Lk)xk, (1)

where IN is an identity matrix of size N and x0 is a random initial condition. The diagonal matrix E ∈
RN×N consists of the constant diagonal entries ε > 0. The parameter ε, also called persuasibility, acts as a
weighting parameter and determines how the agents update their states using the information received from
the neighbors at each time step. We say that the system reaches consensus when agents attain common state
variable, x = s1N , where s ∈ R.

3 Analysis
In this section, we define and derive the closed form expression for the asymptotic convergence factor for
the consensus protocol in (1). This quantity provides a necessary and sufficient condition for consensus and
captures the rate of convergence to consensus.

3.1 Preliminary results
Considering a discrete-time linear system, we write

xk+1 =Wkxk, (2)

where Wk ∈ RN×N are independent, identically distributed random matrices. For (2) to be a consensus
protocol, Wk must have the property Wk1N = 1N , that is, elements in span(1N) are equilibria of the system.

Following (Abaid & Porfiri 2011), we project the consensus problem (1) on the disagreement space,
in terms of a disagreement variable ξk defined as ξk = QT xk ∈ RN−1. The matrix Q ∈ RN×(N−1) has the
properties QT 1N = 0N , QT Q = IN−1, and QQT = R where R = IN−1N1N

T . Thus, the disagreement dynamics
is given by the relation, ξk+1 = W̃kξk, where W̃k = QTWkQ ∈ R(N−1)×(N−1).

Following (Zhou & Wang 2009), the asymptotic convergence factor can be written in terms of the dis-
agreement dynamics as

ra = sup
‖ξ0‖6=0

lim
k→∞

(
E
[
‖ξk‖2

]
‖ξ0‖2

)1/k

(3)

where E[·] is the expected value. In (Abaid & Porfiri 2011), it is shown that the asymptotic convergence
factor is less than one if and only if the disagreement system is mean square stable, that is, if the system in
(2) is mean square consentable.

We define, using the same notation of (Abaid & Porfiri 2011),

G = (R⊗R)(IN2− ε(E[L]⊕E[L])+ ε
2E[L⊗L]) (4)

where ⊗ and ⊕ denote Kronecker product and Kronecker sum, respectively. From (Abaid & Porfiri 2011),
we know that the asymptotic convergence factor is equal to the spectral radius of G.

Thus we have the following proposition for assessing the consentability of the system:

Proposition 1. The system (1) is consentable in the mean square sense if and only if

ra = ρ(G)< 1. (5)

Proof. The proof of the proposition can be found in (Abaid & Porfiri 2011).

In the next subsection, we compute G by a counting technique. Then, we write a closed form expression
for the asymptotic convergence factor for the consensus protocol in (1) by calculating the eigenvalues of G
and associated eigenvectors and applying Proposition 1.
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3.2 Main results
The set of all possible distinct Laplacian matrices is denoted as L̂ = {L(1),L(2), · · · ,L(p)}, where p corre-
sponds to the total number of unique realizations of the Laplacian matrices for a given set of parameters
l, f , and n. Following similar steps in (Abaid & Porfiri 2011, 2012, Porfiri 2011, 2012), we calculate E[L]
and E[L⊗L] using a counting technique assuming that the appearance of each of these p matrices is equally
likely. The matrix E[L] has diagonal components equal to n and and the off-diagonal i j−th components,
where i 6= j, are given by −n/(N−1) when i ∈F and j ∈N ; −n/(l−1) when i ∈L and j ∈L ; and 0
when i ∈L and j ∈F . Therefore we can write

E[L] =
nN

N−1
R f +

nl
l−1

Rl, (6)

where R f =
f

∑
q=1

eqeT
q −

1
N

1 f 1T
N and Rl =

N
∑

q= f+1
eqeT

q −
1
l

1l1T
l , the vector eq ∈ RN×1 has 1 in the qth row and

zeros in the remaining rows, and 1 f = ∑
f
q=1 eq, and 1l = ∑

N
q= f+1 eq.

To compute E[L⊗ L], we note that Li j ∈ {0,−1,n}, and L⊗ L has terms of the form Li jLkm from the
definition of Kronecker product. Therefore, L⊗L can have values {0,1,−n,n2}. To calculate the distinct
values for elements of E[L⊗L], we consider the six possible cases for the indices i, j,k, and m, that is, 1)
i = j, k = m; 2) i = j,k 6= m; 3) i 6= j,k = m; 4) i 6= j,k 6= m, i = k, j = m; 5) i 6= j,k 6= m, i = k, j 6= m; and
6) i 6= j,k 6= m, i 6= k. In general, the diagonal blocks of E[L⊗L] have the form

E[L⊗L]ii =
n2N

N−1
R f +

n2l
l−1

Rl when i ∈N , (7)

and the off-diagonal blocks can have three different forms, depending on the values of i and j,

E[L⊗L]i j =
−n2N

(N−1)2 R f −
n2l

(N−1)(l−1)
Rl +∆1eieT

j −
∆1

N−1
ei(1T

N− eT
i ), when i ∈F , and j ∈N ; (8a)

E[L⊗L]i j = 0, when i ∈L , and j ∈F ; (8b)

E[L⊗L]i j =
−n2N

(N−1)(l−1)
R f −

n2l
(l−1)2 Rl +∆2eieT

j −
∆2

l−1
ei(1T

l − eT
i ), when i ∈L , and j ∈L ; (8c)

where ∆1 =
n(N−n−1)

(N−1)(N−2)
and ∆2 =

n(l−n−1)
(l−1)(l−2)

.

Substituting (7) and (8a) to (8c) in (4), we derive the matrix G in block form. We notice that the blocks
have six cases: diagonal blocks Gii can have i ∈ F or i ∈ L and off-diagonal blocks can have i and j
belonging to either F or L . The blocks of G when both i and j ∈F are given as follows

Gii
(i∈F )

=θ1IN +θ21N1T
N +θ3Î f +θ41 f 1T

N +θ51N1T
f +θ6Îl +θ71l1T

l +θ81 f eT
i +θ91NeT

i +θ10eieT
i +

θ11ei1T
f +θ12ei1T

l +θ131leT
i +θ141N1T

l ; (9a)

Gi j
(i, j∈F , i6= j)

=θ29IN +θ301N1T
N +θ31Î f +θ321 f 1T

N +θ331N1T
f +θ34Îl +θ351l1T

l +θ36eieT
j +θ371NeT

j +θ38ei1T
N

+θ39eieT
i +θ401NeT

i +θ411 f eT
j +θ42e jeT

j +θ43e j1T
f +θ44e j1T

l +θ451leT
j +θ461N1T

l +θ47ei1T
l ;

(9b)
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where Î f , Îl ∈ RN×N are diagonal matrices and Î f has first f diagonal entries equal to one and the remaining
zeros, and Îl has last l diagonal entries equal to one and the remaining zeros. For Gii, when i∈L , the form of
(9a) is retained and the coefficients θ1, . . . ,θ14 are replaced with θ15, . . . ,θ28. Similarly, for the off-diagonal
blocks of G when i ∈F and j ∈L ; i ∈L and j ∈F ; and i ∈L and j ∈L the form remains the same as
that of (9b) and the coefficients θ29, . . . ,θ47 become respectively θ48, . . . ,θ66; θ67, . . . ,θ85; and θ86, . . . ,θ104.
The coefficients, θi for i = 1, . . . ,104 can be found in the Appendix.

It can be verified that G has at most twelve distinct eigenvalues and associated eigenspaces. The eigen-
vectors belonging to the eigenspaces have the form v = [v1

T v2
T · · ·vN

T ]T and satisfy the eigenvalue equation
Gv = λv. The twelve distinct eigenvalues are given as follows

λ1 = ε
2
κ2n+

√
ε4κ3n2− ε3κ5n2 + ε2κ4n2

− εκ1n+1, (10a)

λ2 = ε
2
κ7n− εκ6n+1, (10b)

λ3,12 = γ1 +(r3,12)γ5, (10c)

λ4 = θ1 +θ6−θ29−θ34, (10d)

λ5 = θ15 +θ20−θ86−θ91, (10e)

λ6 = ε
2
κ2n−

√
ε4κ3n2− ε3κ5n2 + ε2κ4n2

− εκ1n+1, (10f)

λ7,8 = τ9 +(r7,8)τ10, (10g)

λ9 = θ15 +θ17− l (θ48 +θ50)+(l−1)(θ86 +θ88) ,
(10h)

λ10 = θ1 +θ3−θ29−θ31, (10i)

λ11 = 0. (10j)

where the parameters κ1 . . .κ7,γ1,γ5,τ9,τ10 are provided in the Appendix, r3,12 are the two solutions of r of
the quadratic equation: (γ2 + γ3 + γ7)+ r(γ4 + γ6 + γ8 + γ5− γ1)− r2(γ5) = 0 and r7,8 are the two solutions
of r of the quadratic equation: τ1 + τ3 + r(τ2 + τ5 + τ6 + τ8− τ9)− r2(τ10) = 0. The explicit definitions of
the eigenspaces associated to these eigenvalues are provided in the Appendix. Here we comment that r1,
r6, r2

(1), and r2
(2) have highly intractable forms and hence we do provide the explicit expressions for these

ratios. The eigenvectors corresponding to the eigenspaces Γ(1), Γ(2), and Γ(6) can be shown to satisfy the
eigenvalue equation Gv = λv without the explicit expressions for these ratios. It can be verified that the
eigenspaces Γ(1), Γ(2), and Γ(6) are mutually linearly independent, as are the triplet Γ(7), Γ(8), and Γ(9) and
the pair Γ(3) and Γ(12). The remaining eigenspaces are mutually orthogonal to each other. Next, we find the
eigenspace dimensions by counting the number of degrees of freedom for eigenvectors in each eigenspace,
which are as follows: 1 for Γ(1), Γ(2), and Γ(6); l−1 for Γ(3); 2(l−1)( f −1) for Γ(4); (l−1)(l−2)−1 for
Γ(5); f −1 for Γ(7), Γ(8), and Γ(9); ( f −1)( f −2)−1 for Γ(10); 2N−1 for Γ(11); and 2l−2 for Γ(12). Since
the eigenspaces are all pairwise linearly independent, their direct sum has dimension N2. Hence, G has N2

linearly independent eigenvectors and has a spectrum comprised of {λi}12
i=1. The main result follows from

Proposition 1.

Theorem 1. For the NC leader-follower consensus protocol in (1), with f , l ≥ 3, n ∈ {1, . . . ,min{ f −1, l−
1}}, and the associated matrix G with eigenvalues in (10a) to (10j), the asymptotic convergence factor ra is
given as

ra = max
i=1,...,12

{|λi|}. (11)

4 Simulations and Discussion
Figure 1(a) presents Monte Carlo simulations for a network with f = 8, l = 4, n = 3,ε = 0.1 and fixed initial
conditions. We observe as the disagreement system converges to zero, the magnitude of the disagreement
vector decreases linearly on a logarithmic scale. We compute a best fit line in logarithmic scale over time
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Fig. 1: (a) Magnitude of the disagreement vector for Monte Carlo simulations with constant initial conditions and
f = 8, l = 4, n = 3, and ε = 0.1. Individual markers show two hundred different realizations and the black solid line
depicts the average disagreement. (b) Base-ten logarithm of ra varying with ε and f = 8, l = 4, n = 3.

steps [10,20] and find that the square of the disagreement norm decreases as (0.789)k, thus confirming the
analytical prediction in (11) which gives ra = 0.794 for the same set of system parameters.

To study the dependence of the asymptotic convergence factor on model parameters, we choose a system
with parameters f = 8, l = 4, and n = 3 and plot ra varying with ε in Figure 1(b). We observe that the
curve for ra as we vary ε has a characteristic shape for all admissible values of N, f , l, and n. In particular,
log[ra] equals zero when ε = 0, decreases up to a certain negative value of ε, and then increases unbounded
as ε → ∞. By definition, convergence speed increases as ra decreases and the systems with ra > 1 do not
converge to consensus. Therefore, we denote the maximum convergence speed as r∗a, where ra is minimum,
and its corresponding persuasibility as ε∗.

To further explore the behavior of the asymptotic convergence factor on the system parameters, we
consider three specific cases for a numerical study: (a) followers are twice the number of leaders f = 2l,
(b) leaders are twice the number of followers l = 2 f , and (c) number of leaders is same as that of the
followers l = f . In Figure 2(a), Figure 2(b), and Figure 2(c), we fix N and n and plot the asymptotic
convergence factor in base-ten logarithmic scale for the three aforementioned cases. In each of these plots,
we observe that log[ra

∗] decreases as the proportion of leaders increases in each system, which means the
maximum convergence speed increases as we increase the relative number of leaders with all other system
parameters held constant. Moreover, increasing the proportion of leaders results in the decrease of ε∗,
which indicates that in the presence of higher proportions of leaders, the agents must be less persuasible
or in other words more stubborn to attain maximum convergence speed. However, increasing the relative
number of leaders not always results in achieving faster convergence speed for system performance at a set
persuasibility (or value of ε). Figure 2(a) demonstrates that increasing the proportion of leaders results in
a slight decrease of convergence speed when ε = 0.31. Also, in Figure 2(b), and Figure 2(c), there exists
ranges of ε ([0.036,∞) and [0.293,∞), respectively) where log[ra] is not susceptible to different proportion
of leaders.

Next, to investigate the effect of group size on these trends of the asymptotic convergence factor, we
compare every case of Figure 2(a) with the corresponding case in Figure 2(b). We observe that when nu-
merosity is increased proportionally with group size, both r∗a and ε∗ decrease. In other words, by increasing
group size, we observe maximum convergence speed increases if numerosity is kept proportionally constant,
but the agents must be more stubborn to achieve it. Further, in Figure 2(a) and Figure 2(c), we fix the nu-
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Fig. 2: Comparative study of the asymptotic convergence factor for three different proportions of leaders and followers
and (a) N = 18 and n = 4, (b) N = 180 and n = 40, (c) N = 180 and n = 4.

merosity and increase the group size, which results in a slight decrease of maximum convergence speed and
corresponding persuasibility. This is in support with the previous argument that as each agent interacts in a
larger group, maximum convergence speed decreases if numerosity for each agent is not increased.

Finally, we study the dependence of asymptotic convergence factor on the numerosity of individuals
keeping the other system parameters constant. Comparing each case of Figure 2(b) with that of Figure 2(c),
we observe r∗a and ε∗ decrease between the figures at the constant group size. This demonstrates that,
as we fix the group size and increase numerosity for each agent, the system achieves a faster maximum
convergence speed at a significantly lower value of persuasibility. In other words, as a consequence of
increasing numerosity, the agents are enabled with increasing information exchange among themselves, and
this results in faster maximum convergence speed, while simultaneously requiring that the agents to be more
stubborn.

5 Conclusion
In conclusion, we define a discrete-time leader-follower consensus protocol, where both leaders and follow-
ers negotiate their states over a stochastically-switching network. We determine a closed form expression
of the asymptotic convergence factor, which measures the rate of convergence to consensus. Finally, we
explore the dependence of the asymptotic convergence factor on model parameters, which are group size,
proportion of leaders, numerosity, and persuasibility using numerical simulations. We find that the system
achieves consensus faster with a higher proportion of representatives but this convergence rate is achieved
only when all individuals are more stubborn during the decision making process. In addition, increasing the
population size necessitates increasing the connectedness of each individual to maintain the system’s ability
to reach consensus, when the proportion of representatives is kept constant.
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6 APPENDIX
The eigenspaces of G in (9) are

Γ
(1),(6) = {v ∈ RN2

: vi = (µ1−µ2)ei +µ21 f +µ31l : (µ1−µ2)+ f µ2 + lµ3 = 0,
µ3

µ2
= r1,6 when i ∈F

and vi = µ31 f +µ41l : f µ3 + lµ4 = 0 when i ∈L }; (12a)

Γ
(2) = {v ∈ RN2

: vi = (µ1−µ2)ei +µ21 f +µ31l : (µ1−µ2)+ f µ2 + lµ3 = 0,
µ2

µ3
= r2

(1) when i ∈F

and vi = µ31 f +µ41l +(µ5−µ4)ei : f µ3 + lµ4 +(µ5−µ4) = 0,
µ3

µ4
= r2

(2) when i ∈L }; (12b)

Γ
(3) = {v ∈ RN2

: vi =
N

∑
k= f+1

µkek :
N

∑
j= f+1

µ j = 0 wheni ∈F and vi = µi1 f +
N

∑
k= f+1

β
i
kek : β

f+m
f+m = (r3)µ f+m,

β
f+n
f+m(m 6= n) =−

(
f + r3

l−2

)(
µ f+n +µ f+m

)
where m,n ∈L when i ∈L }; (12c)

Γ
(4) = {v ∈ RN2

: vi =
N

∑
j= f+1

µ
i
je j :

N

∑
j= f+1

µ
i
j = 0,

f

∑
i=1

µ
i
j = 0 when i ∈F and vi =

f

∑
j=1

µ
i
je j :

f

∑
j=1

µ
i
j = 0,

N

∑
i= f+1

µ
i
j = 0 when i ∈L }; (12d)

Γ
(5) = {v ∈ RN2

: vi = 0 when i ∈F and vi =
N

∑
k= f+1

µ
i
kek :

N

∑
k= f+1

µ
i
k = 0,

N

∑
i= f+1

µ
i
k = 0, µ

i
i = 0 when i ∈L }; (12e)

Γ
(7),(8) = {v ∈ RN2

: vi = (µi)1l +
f

∑
k=1

β
i
kek : β

k
k = (r7,8)µk, β

n
m(m 6= n) =−

(
l + r7,8

f −2

)
(µn +µm)

where m,n ∈F and
f

∑
j=1

µ j = 0 when i ∈F and vi =
f

∑
k=1

µkek when i ∈L }; (12f)

Γ
(9) = {v ∈ RN2

: vi = (µi)1l +
f

∑
k=1

β
i
kek : β

k
k = 0,β n

m(m 6= n) =−
(

l
f

)
(µn−µm) where m,n ∈F

and
f

∑
j=1

µ j = 0 when i ∈F and vi =
f

∑
k=1

µkekwhen i ∈L }; (12g)

Γ
(10) = {v ∈ RN2

: vi =
f

∑
k=1

µ
i
kek : µ

i
i = 0,

f

∑
k=1

µ
i
k = 0,

f

∑
i=1

µ
i
k = 0 when i ∈F and vi = 0 when i ∈L }; (12h)

Γ
(11) = {v ∈ RN2

: v = ω⊗1N and v = 1N⊗ω,ω ∈ RN}; (12i)

Γ
(12) = {v ∈ RN2

: vi =
N

∑
k= f+1

µkek :
N

∑
j= f+1

µ j = 0 when i ∈F and vi = νi1 f +
N

∑
k= f+1

β
i
kek :

β
f+m
f+n =−

(
f
l

)(
µ f+n +ν f+m

)
and

N

∑
j= f+1

ν j = 0 where m,n ∈L when i ∈L }; (12j)

The parameters used in (9) and in (10) are

α1 = ε
2n2
(

f −1
(N−1)2 +1

)
− εn; α2 = α1 +

ε2n2N
(N−1)2 ; α3 =

ε2ln2

(l−1)(N−1)
+θ6; α4 =

ε2n2( f −2N)

(N−1)2 +
εn

N−1
;

α5 =
ε2n2( f −N)

(N−1)2 +
εn

N−1
; α6 = ε

2n2
(

f
(N−1)2 +

l−2
(l−1)(N−1)

− 1
l−1

− 1
N−1

)
+

εn
N−1

; α7 =
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ε2ln2
(

f
N−1 −

N−1
l−1 + l−2

l−1 −1
)

(l−1)N
+

εln
(l−1)N

; θ1 =
(N−1)(1− εn)

N
− εn( f −1)

N(N−1)
; θ2 =

α1 f
N +( f −1)θ11−θ1

N
;

θ3 = α1 +θ11; θ4 =−
(

α1

N
+θ11

)
; θ5 =−

θ3

N
; θ6 =

ε2ln2
(

f−1
N−1 +N−1

)
(l−1)N

− εln(N−1)
(l−1)N

; θ7 =−
θ6

l
; θ8 =

− ∆1ε2

N
; θ9 =

− f θ8−θ10

N
; θ10 =

∆1ε2

N−1
; θ11 =−

∆1ε2

N(N−1)
; θ15 = θ1−

εn
N−1

; θ16 =
α2 f
N2 +

f θ11

N
− θ15

N
;

θ17 = α2 +θ11; θ18 =−
(

α2

N
+θ11

)
; θ19 =−

θ17

N
; θ20 = α3 +θ26; θ21 =−

(
α3

l
+θ26

)
; θ23 =

− f θ8

N
− lθ27

N

− θ24

N
; θ24 =

∆2ε2l
(l−1)N

; θ26 =−
θ24

l
; θ27 =−

∆2ε2

N
; θ28 =

(l−2)θ26

N
; θ29 =

2εn
N−1

−
ε f n
N−1 +1

N
; θ30 =

1
N

(
α4 f
N

+( f −1)θ11 +θ10−θ29) ; θ31 = α4 +θ11; θ32 =−
α4

N
−θ11; θ33 =−

α4 +θ11

N
; θ34 =

ε2ln2
(

f
N −2

)
(l−1)(N−1)

+
εln

(l−1)N
;

θ35 =−
θ34

l
; θ36 = ∆1ε

2; θ37 =
− f θ8−θ10−θ36

N
; θ48 =

1
N

(
εn(N− f )
(N−1)

−1
)

; θ49 =
α5 f
N + f θ11 +θ10−θ48

N
;

θ50 = α5 +θ11; θ51 =−
α5

N
−θ11; θ52 =−

α5 +θ11

N
; θ53 = θ26 +θ72; θ54 =−

(
θ72

l
+θ26

)
; θ73 =−

θ72

l
;

θ56 =
− f θ8− lθ27−θ24−θ36

N
; θ68 =

α5 f
N +( f −1)θ11−θ48

N
; θ72 =

εln
(l−1)N

− ε2ln2(N− f )
(l−1)N(N−1)

; θ96 =
∆2ε2

l−1
;

θ86 =
εn
N

(
− f
(N−1)

+
N−1
(l−1)

+
2− l
(l−1)

+1
)
− 1

N
; θ87 =

α6 f
N + f θ11−θ86

N
; θ88 = α6 +θ11; θ91 = α7 +θ26;

θ89 =−
(

α6

N
+θ11

)
; θ90 =−

α6 +θ11

N
; θ92 =−

(
α7

l
+θ26

)
; θ93 = ∆2ε

2; θ94 =
− f θ8− lθ27−θ24−θ93

N
;

θ103 =
(l−2)θ26 +θ96

N
; θ12 = θ40 = θ43 = θ44 = θ59 = θ81 = θ82 = θ11; θ13 = θ14 = θ25 = θ45 = θ46 = θ47 = θ62

= θ66 = θ74 = θ76 = θ77 = θ78 = θ83 = θ84 = θ85 = θ95 = θ100 = 0; θ22 = θ41 = θ60 = θ79 = θ98 = θ8;
θ39 = θ42 = θ58 = θ80 =−θ38 =−θ57 = θ10; θ55 = θ36; θ61 = θ99 = θ24; θ63 = θ97 = θ101 = θ26;
θ65 = θ28; θ67 = θ48; θ69 = θ50; θ70 = θ51; θ71 = θ52; θ75 = θ9; θ102 = θ64 = θ27; θ104 =−θ96;

K1 = 2n(N−1)(−l +N−1)
(
−l2N− l(N +2)+N3−3N2 +3N−2

)
+n2 (l4(N−2)−2l3N

− l2 (2N3−6N2 +5N +2
)
+2l

(
N3−N2 +N−2

)
+(N−2)

(
N2−N +1

)2
)+(N−2)(N−1)2(l−N +1)2;

K2 = n
(
(l−N)

(
l2(N−2)− lN−N3 +3N2−3N +2

)
−2l

)
+(N−1)N(−l +N−2)(−l +N−1);

K3 =
(
N2−3N +2

)(
l2n+ l(n−N +1)+n

(
N2−N +1

)
+(N−1)2) ; κ1 =

f 2 + f (3l−2)+2l(l−2)
(N−2)(N−1)

;

κ2 =
K3

2(N−2)(N−1)3 ; κ3 =
K1

4(N−2)(N−1)4 ; κ4 =
f 2

(N−1)2 ; κ5 =
K2

(N−2)(N−1)3 ; κ6 =
2l

l−1
;

κ7 =
ln

(l−1)2 +n+1; κ8 = κ1−κ6; κ9 = κ7−κ2; κ10 = κ
2
9 −κ3; κ11 = κ

2
8 −κ4; κ12 = κ5 +2κ8κ9;

γ1 = f (θ103 +θ19−θ26−θ28−θ90)+θ15 +θ17−θ86−θ88; γ2 = f (θ103 +θ19−θ21−θ26−θ28−θ90 +θ92) ;
γ3 = f (−θ26 +θ48 +θ72−θ86−θ91) ; γ4 = θ15 +θ20−θ86−θ91; γ5 = γ6 = θ23−θ26−θ94; γ7 =−2 f θ96;
γ8 =−θ93−θ96; τ1 = l (−θ29−θ31 +θ48 +θ50) ; τ2 = θ1−θ29−θ31 +θ3; τ3 = θ33l−θ5l; τ5 =−θ10−θ36;
τ6 =−θ11−θ37 +θ9; τ8 = θ10; τ9 = θ15 +θ17− l(θ48 +θ50)+(l−1)(θ86 +θ88); τ10 = θ10;
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