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Abstract - We have recently presented a competitive method to solve overdetermined linear systems of equations with multiple right 

hand side vectors, where the unknown matrix is symmetric and positive definite. The coefficient and the right hand side matrices are 

respectively named as data and target matrices. There are also physical contexts, such as modeling a deformable structure and 

computing the correlation matrix in finance or insurance/reinsurance industries, where a symmetric positive semi-definite solution of 

an overdetermined linear system of equations needs to be computed. Several methods have been proposed for solving such problems 

with the assumption that the data matrix is unrealistically error free. In real measurements, however, both the data and target matrices 

may contain error. Thus, for practical purposes, an error in variables model appears to be more appropriate. Here, we define a new error 

function to consider error in both data and target matrices and propose an iterative algorithm to minimize the defined error. We 

illustrate that our proposed approach turns to be efficient in attaining accurate solutions. For this purpose, we generate random test 

problems and show that our proposed algorithm computes the solution faster than the existing methods. Moreover, the standard 

deviation in error matrix is considerably lower when we use our proposed algorithm. This feature makes our method more efficient and 

desirable in real applications. 
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1. Introduction 
In several physical problems, such as estimation of the mass inertia matrix in design of controllers for solid structures 

and robots, an overdetermined linear system of equations with multiple right hand side vectors arises with the constraint 

that the unknown matrix be symmetric and positive definite. We have recently introduced a method for solving such a 

problem, using a newly defined error in variables (EIV) model; see [3]. There are also physical contexts, such as modeling 

a deformable structure [1] and computing the correlation matrix in finance or insurance/reinsurance industries [2], where a 

symmetric positive semi-definite solution of an overdetermined linear system of equations needs to be computed or 

equivalently, the problem 

 

  (1) 

 

is needed to be solved, with D, T ∈ ℝ
m×n

, m ≥ n, are given and X ∈ ℝ
n×n

, a symmetric positive semi-definite matrix, is to be 

computed as a solution. Available methods for solving such a problem consider an ordinary least squares formulation; e.g., 

see [1]. A practically useful error in variables (EIV) model was introduced in [3] for a positive definite linear system of 

equations. Based on this formulation, with (·) standing for trace of a matrix, a solution of the optimization problem 

 

 
 

(2) 
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is a solution of a corresponding positive definite linear system of equations, where X is symmetric and by X ≻ 0, we mean 

X is positive definite. The error formulation in [3] not being suitable here, we first motivate and present a new error 

formulation for the positive semi-definite case. 

In (2), the entries of D – TX
-1

 and DX – T represent the errors in D and T, respectively. Here, we need to find a 

represent the error in D without engaging X
-1

. Before describing the EIV model to solve the positive semi-definite 

linear system of equations, we consider a newly noted problem, the positive semi-definite linear system of equations 

with a given rank r of the unknown matrix (here, denoted by PSDEIV-Rr). 

 

2. Error Formulation 
The error in D is supposed to be the difference between the real value of D and the predicted value for D obtained 

by DX ≃ T. To compute the predicted value for D, we use the general least squares solution of the system XD
T
 ≃ T

T
. 

Considering the block forms D
T
 = (d1,···,dm) and T

T
 = (t1,··· ,tm) ; where di, ti ∈ ℝ

n
, for i = 1, ··· ,m, we have Xdi =ti, for i = 

1,··· ,m. The general solution to such a linear system is 

 

 
 (3) 

 

where X
†
 is the pseudo-inverse of X and ni is an arbitrary vector in the null space of X [4]. A straightforward choice for ni is 

ni = 0, which results in di = X
†
ti and ΔD = D – TX

†
. We later consider suitable choices for ni  which minimize ∥ΔD∥F, where 

F stands for the Frobenius norm. Note that to compute di from (3), the spectral decomposition can be applied. 

Now, making use of the spectral decomposition of X in (3), we can write the general solution as di = X
†
ti +Un-rzi; where 

zi ∈ ℝ
n-r

, for i = 1,…,m, are arbitrary vectors. Thus, D
T
 = X

†
T

T
+Un-r ( z1 … zm ) ; and the predicted value for D is 

 

 
 

(4) 

 

where Z ϵ ℝ
m×(n-r) 

is arbitrary, and the error in D is ΔD = D – (TX
†
+ZU

T
n-r). A reasonable choice for Z in this formulation 

would be the one minimizing the norm of ΔD, which is given as the solution of the optimization problem 

 

 
 

(5) 

 

where F = D – TX
†
. Solving (5) results in [4] 

 

  (6) 

 

Substituting (6) in (4), we get 

 

 

 

(7) 

 

Based on the above discussion, ΔD = (D – TX
†
)UrU

T
r and ΔT = DX – T respectively represent the errors in D and T. Thus, 

to solve a rank r positive semi-definite linear system of equations, it is appropriate to minimize the error 

 

 
 

(8) 

 

Therefore, the following problem is posed: 
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(9) 

 

Using the spectral decomposition of X, we get 

 

 
 

(10) 

 

where A = D
T
D, C = D

T
T +T

T
D and B = T

T
T. Hence, the solution X is computed by letting X =Y*(S*)

2
(Y*)

T
 in which Y* ∈ 

ℝ
n×r

  and S* = diag(s1, s2, …,sr) form a solution of 

 

 

 

(11) 

 

with F(Y,S) = (Y
T
AYS

2
 - Y

T
CY +Y

T
BYS

-2
). 

Next, we discuss how to solve (11). We are to develop an iterative algorithm by first solving the following related problem: 

 

 

 
(12) 

 

for a given Y ∈ ℝ
n×r

  in each iteration and then use the results to solve (11).  

The solution to (12) for an arbitrary Y ∈ ℝ
n×r

 is given by S = diag(s1,··· ,sr), with 

 

 

 
(13) 

 
where yi is the ith column of Y. Note that the above solution leads to a unique value of S

2
 : 

 

 

 
 

 
2.1. Mathematical Solution 

We can now proceed to solve (11). For a given S, we consider an optimization problem, equivalent to (11), which is 

simpler to solve. Let Y ∈ Vr(ℝ
n
) be a given matrix and the diagonal matrix S(Y) be computed by (13). The optimization 

problem 

 

 

 
(14) 

 

is equivalent to (11), meaning that both (11) and (14) have the same Karush-Kuhn-Tucker (KKT) points. To find a 

KKT point for the optimization problem (11), we solve (14) by using a proper optimization algorithm on the Stiefel 

manifold, that is, the superlinearly convergent BFGS algorithm of [5] for solving 

 
 

 
(15) 

 

As discussed in [5] and [6], PSDEIV-Rr converges globally to a local solution of (11) with an asymptotic superlinear 

convergence rate.  
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To extend our proposed method for solving positive semi-definite linear system of equations over all ranks, we solve 

the problem presuming all possible ranks to attain a solution with a minimal error. We further adapt the proposed approach 

to solve two well-known problems in control theory, the minimum rank problem and the problem of computing correlation 

matrix as explained next.  

(i) Positive semi-definite EIV minimum rank problem: 

 

 
 

We start from the smallest nontrivial possible rank, r = 1, and solve the corresponding positive semi-definite linear 

system of equations to compute the solution Xr and the corresponding EIV error E(r). If the inequality E(r) < e holds for 

the computed Xr , then we stop; otherwise, we increase r by one and continue iteratively until satisfying the inequality E(r) 

< e. The number of iterations may be at most n. Note that if after n iterations, none of the matrices Xr , r = 1,···n, satisfies 

the inequality E(r) < e, then we may consider Xr with the smallest corresponding value E(r) as an approximate solution of 

the minimum rank problem.  

(ii) Computing the correlation matrix: This problem is a special case of the positive semi-definite linear system of 

equations. Computing a correlation matrix is equivalent to finding a positive semi-definite matrix X to satisfy X = C and 

PX = Q. The linear constraints X = C and PX = Q can be replaced by the overdetermined system of equations 

 

 
 

(16) 

 

To solve the overdetermined system of equations (16), an ordinary formulation has been considered [2]. We note that (16) 

is a special case of the positive semi-definite linear system of equations with data and target matrices D =  and T = 

 where I is the n×n identity matrix, P,Q ∈ ℝ
m×n

 and C ∈ ℝ
n×n 

are arbitrary. 

 

3. Numerical Results  
Comparative numerical results show the efficiency and competitiveness of our proposed algorithms. Also, 

comparisons of the results obtained by our proposed approaches for solving positive semidefinite linear systems of 

equations, minimum rank problem and the problem of computing correlation matrix with some available methods confirm 

competetiveness of our algorithms in computing solutions with lower values of standard deviation more efficiently. The 

Dolan-More performance ´ profiles also demonstrate both the efficiency and accuracy of our proposed methods. 

 

4. Conclusion 
We proposed a new approach to solve positive semi-definite linear system (PSDLS) of equations. Our proposed error 

estimate for both data and target matrices admitted a realistic problem formulation. We first considered a newly defined 

problem, namely the given rank positive semi-definite linear system (Rr-PSDLS) of equations, and presented a globally 

convergent algorithm for its solution. The proposed algorithm also has an asymptotic superlinear rate of convergence. 

Numerical results confirmed the effectiveness of our approach to compute solutions of Rr-PSDLS more efficiently than the 

trust region code in MANOPT toolbox of MATLAB. We further showed how to apply the error in variables (EIV) model 

for solving rank r positive semi-definite linear system of equations (PSDEIV-Rr) to solve the general PSDLS. Based on the 

obtained numerical results, our method for solving the PSDLS showed to be more efficient than an interior point method 

and a path following algorithm. We also introduced novel algorithms based on the proposed EIV method to solve two well-

known problems in control theory: minimum rank and correlation matrix estimation. The numerical results confirmed the 

efficiency and accuracy of the algorithms in comparison with the available methods. 
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