
Proceedings of the 2nd International Conference on Computer and Information Science and Technology (CIST’16)

Ottawa, Canada – May 11 – 12, 2016

Paper No. 133

133-1

Modeling Software Defined Networks using Mininet

Casimer DeCusatis1, PhD, Aparicio Carranza2, PhD and Jean Delgado-Caceres2
1Marist College, Poughkeepsie, NY USA

2New York City College of Technology of The City University of New York (CUNY)

Brooklyn, New York USA

Abstract - A software defined network (SDN) implements separation of the network data and control planes, combined with centralized

management. This is becoming an important feature of cloud computing environments, enterprise data centers, and telecommunication

service providers, all of whom are implementing software defined data centers. In this paper, we provide a tutorial on the use of network

modeling tools such as Mininet to investigate the behavioral characteristics of SDN. Beginning with a default Mininet installation in a

virtual machine (VM), we describe how to instantiate SDN features such as the open source network controller, Open Daylight.

Commands to spawn multiple instances of servers and network nodes will be discussed, along with recommendations on network latency

and scale. The resulting models have applications to network education and training as well as providing a way to evaluate SDN

configurations prior to production deployment.

1. Introduction
 In recent years, the design of software defined data centers has received increased attention as a means of increasing

the deployment speed for new applications [1]. Since both server and storage virtualization are relatively mature, a key

enabler for this approach is the creation of software-defined networks (SDN). Some of the distinguishing features of an SDN

network include separation of the data and management/control planes; a shift towards centralized management; and

abstraction of key network attributes through an application programming interface (API), which enables the creation of

virtual, automated network flows [1, 2].

 The abstractions provided by SDN can potentially reduce management complexity and standardize traffic routing

mechanisms, which contribute to better network reliability, availability, and serviceability. Further, introducing a centralized

SDN network controller enables end-to-end network visibility and faster reconfiguration in response to disasters. For

example, a fully automated system could be programmed to invoke disaster recovery protocols without the presence of a

human administrator. SDN can reduce network recovery times, and make it easier to schedule and automate periodic testing

of a business continuity plan. Prior to the introduction of SDN, re-provisioning a data center network could take days or

weeks, while the network between multiple data centers might require weeks or months [3]. SDN makes it possible to build

the physical network infrastructure once, then reconfigure it using only software. The resulting in location agnostic networks

reduce reconfiguration time to a few minutes, the same order of magnitude as provisioning new virtual machines (VMs) on

a server.

 In this paper, we consider the use of Mininet to model the behavior of SDN networks. We provide a brief tutorial on

the installation and use of Mininet in a virtual machine (VM) environment, and discuss the requirements for installing the

Open Daylight open source SDN controller. Scalability is discussed, both in terms of host server limitations and virtual

network response times. We provide a framework for using this approach to create and simulate SDN networks for both

educational and research purposes.

2. Mininet Installation and Configuration
 Mininet is a popular open source network emulator capable of creating networks of virtual hosts, switches, and SDN

controllers [4]. Mininet was created in Python and provides a Python API for user customization (though it does rely on

some C programming utilities). It can run in a VM based on Linux Ubuntu server version 14.04, and using process-based

virtualization it can create hundreds or thousands of virtual host and network instances on a single operating system. The

Mininet hosts run standard Linux operating systems, and Mininet switches running Linux can support OpenFlow (note that

currently Mininet does not support non-Linux compatible SDN controllers or OpenFlow switches). Mininet provides a way

133-2

to emulate system behavior (subject to any limitations of the simulation hardware), and since it runs a real Linux kernel and

network stack (including compatible kernel extensions), any code developed using Mininet can be transferred to production-

ready hardware with minimal changes. Mininet includes an OpenFlow-aware command line interface, which supports a

basic set of network topologies and allows highly flexible custom topologies.

 We experimented with Mininet 2.2.1 running under Ubuntu Linux on a Toshiba laptop using an Intel Core i7-4700MQ

CPU processor at a 2.40GHz x 8, 5.7 GB of Memory and natively running Ubuntu 14.04 from the CLI by retrieving the code

from its online repository (which also checks automatically to insure that the latest version of Mininet is being used) using

the command

$ git clone git://github.com/mininet/mininet

 The basic Mininet install can then be completed using the command

$ mininet/util/install.sh

 A simple default virtual network consisting of two hosts, represented as h1 and h2, a switch, s1 and a controller, c0

(as shown in Figure 1) can be created using the command

$ sudo mn

 Similarly, a Mininet instance can be created in a VM, for example using VirtualBox which is available from the

Mininet web site [5]). Note that since the Mininet VM is based on Ubuntu Server, it may not use predictable network

interface names like enp0s3, so the CLI will display interface names such as eth0. This has been corrected for Ubuntu 15.10

and higher. Once the installation is completed, the ping command can be applied to verify that connectivity exists within

hosts.

$ sudo mn --test pingall

Fig. 1: Graphical representation of network created by command sudo mn.

 Many other network configurations can be created in a similar manner. For example, the following command spawns

a single switch with three attached hosts, each of which is assigned a MAC address and static IP address:

$ sudo mn --arp --topo single,3 --mac --switch ovsk --controller remote

 where the parameters specified in this command include the following:

133-3

 –mac: Auto set MAC addresses

 –arp: Populate static ARP entries of each host in each other

 –switch: ovsk refers to kernel mode OVS

 –controller: remote controller can take IP address and port number as options

 As another example, the following command spawns two switches connected by an inter-switch link (ISL) with one

host attached to each switch:

$ sudo mn --topo linear --switch ovsk --controller remote

 Some other commonly used CLI management commands include the following:

 h1 ping h2 This is used to ping a host and test reachability

 nodes To view the list of nodes available

 dpctl To control and edit flow tables.

 iperf To perform a TCP bandwidth test between hosts (see Figure 2)

Fig. 2: TCP Speed Test on Mininet.

 We can also open a terminal window and SSH into the Mininet VM with X Forwarding enabled (if using a Windows

System Server, this can be done using Xming with Putty as an SSH client). It is also possible to display OpenFlow messages

passing between the switch and controller, since the Mininet VM comes with the WireShark application pre-installed, and a

custom version of the OpenFlow dissector. This can be invoked with the command:

[1] $ sudo wireshark

 It should be noted that starting Wireshark with root privileges is a security risk, although for research environments

the risk is likely minimal. We can create a display filter for OpenFlow messages by entering the text of in the Filter window

of WireShark and selecting Apply.

3. Virtual Networks in Mininet
 We accessed Mininet’s directory and created a text file in Python for our network, as illustrated in Figure 3.

Fig. 3: Text file for virtual network written in Python.

133-4

 In this case, components are added using the script:

leftHost = self.addHost(‘h1’)

leftSwitch = self.addSwitch(‘s1’)

 And connected to each other by a link using the script:

self.addLink(leftHost, leftSwitch)

 This text file is then saved and runs using the command:

$ sudo mn --custom ~/mininet/custom/topo-2sw-2host.py --topo my topo --test pingall

 To demonstrate the scalability of this approach, we modified the Mininet network to create 64 hosts and 9 switches

[6, 7]. As expected, the time to ping resources increases as the network grows larger; results from our network are shown in

Table 1.

Table 1. Ping Test Performance.

Hosts Switches Links
Ping Test

(seconds)

2 1 2 5.244

3 2 4 5.45

10 3 30 19.515

64 9 72 87.30

4. Open Daylight Configuration
 The ping response times between the switch and controller are significant because each OpenFlow-enabled switch

needs to connect with a centralized SDN controller on a regular basis (the controller holds the routing tables, for example,

so whenever a packet with a new IP address arrives at the ingress of an OpenFlow switch the switch must ask the controller

how to proceed). We can also create an Open Daylight instance connected to the Mininet network.

 Open Daylight can be installed in a second VM, and it’s convenient to connect both VMs to a host-only network so

they can communicate with each other and with SSH. To build the OpenDaylight version 1.3 virtual machine, we can

download and install a server ISO disk image [6]. The minimum configuration to support Open Daylight should include

about 2 GB RAM and 2 CPUs. Each VM should have two network adapters. By default, the first VM network adapter is

attached to the VirtualBox NAT interface and is already configured when the VM boots. The second network adapter needs

to be configured to a host-only interface as noted previously. The VirtualBox DHCP server will assign an IP address to the

host-only network; we can edit the “network interfaces” file to insure that devices will remain connected after the VM

restarts. We can either SSH into the Open Daylight VM using the VirtualBox interface or by using a separate terminal

emulator.

 Since Open Daylight is a Java program, we need to install and configure the Java runtime environment, using the

commands

$ sudo apt-get update

$ sudo apt-get install default-jre-headless

 Instructions on how to set the Java_Home environment variable are provided elsewhere [4, 6, 7]. The Open Daylight

software can then be installed from the open source ODL website (www.openflow.org). On a Linux host by using the wget

command to obtain the .tar file:

133-5

$ wget https://nexus.opendaylight.org/content/groups/public/org/opendaylight/integration/distribution-karaf/0.4.0-

Beryllium/distribution-karaf-0.4.0-Beryllium.tar.gz

 Extracting the .tar file creates a folder named distribution-karaf-0.4.0-Beryllium which contains the OpenDaylight

software and plugins. OpenDaylight is packaged in a Karaf container that includes all the software and optional plugins in a

single distribution folder. To run OpenDaylight, run the karaf command inside the package distribution folder:

$ cd distribution-karaf-0.4.0-Beryllium

$./bin/karaf

[2] Once Open Daylight is running, the following command lists all the optional features:

$ opendaylight-user@root> feature:list

 These features may include the following:

 dl-restconf: Allows access to RESTCONF API

 dl-l2switch-switch: Provides network functionality similar to an Ethernet switch

 dl-mdsal-apidocs: Allows access to Yang API (not implemented in our testing)

 dl-dlux-all: OpenDaylight graphical user interface

 The Open Daylight GUI can be accessed from a browser on the host system by entering the URL of the OpenDaylight

User Interface (DLUX UI), which is running on the Open Daylight VM (and thus has the same IP address as this VM) under

default port 8181. The default username and password are both admin. The GUI will display the topology of the Mininet

network, and can be used to request detailed information about the nodes and host connections.

 As an example, on a Mininet VM, we created a network topology using 4 switches in a linear topology, each connected

to one host, with the Open Daylight controller VM having an IPIP address of 192.168.50.1 on port 6033 (we can auto-

configure the MAC address for each attached host). This is done using the following Mininet command:

$ sudo mn --topo linear,4 --mac --controller=remote,ip=192.168.50.1,port=6033 --switch ovs,protocols=OpenFlow13

 We can then test that the OpenDaylight network is working by pinging all nodes and verifying that every host is

reachable.

5. Conclusions
 The growing popularity of SDN within cloud computing environments and related applications has led to an interest

in modeling the behavior of SDN network configurations. We have demonstrated the use of Mininet to simulate an SDN

network using an Open Daylight controller. We discussed how to install Mininet and the controller in two virtual machines,

provided some common useful commands, and discussed how to capture OpenFlow message exchanges on the network.

Future work may include implementing the Yang data modeling structures and REST API in this environment.

References
[1] C. DeCusatis, “Reference Architecture for Multi-Layer Software Defined Optical Data Center Networks,” Electronics,

vol. 4, no. 3, pp. 633-650, 2015.

[2] K. Barabesh, R. Cohen, D. Hadas, V. Jain, R. Recio, and B. Rochwerger, “A case for overlays in DCN virtualization,”

in Proc. 2011 IEEE DC CAVES workshop, collocated with the 22nd International Tele-traffic Congress (ITC 22).

[3] J. Manville, “The power of a programmable cloud,” in OFC 2012 Annual Meeting, Anaheim, CA, 2013.

[4] F. Keti and S. Askar. “Emulation of Software Defined Networks Using Mininet in Different Simulation Environments,”

in 6th International Conference on Intelligent Systems, Modelling and Simulation, 2015.

[5] SDN Hub. (2016, April 20). Useful Mininet setup. [Online]. Available: http://sdnhub.org/resources/useful-mininet-

setups/

[6] Linkletter, (2016, April 20). Using the Open Daylight SDN controller with the Mininet network emulator [Online].

https://nexus.opendaylight.org/content/groups/public/org/opendaylight/integration/distribution-karaf/0.4.0-Beryllium/distribution-karaf-0.4.0-Beryllium.tar.gz
https://nexus.opendaylight.org/content/groups/public/org/opendaylight/integration/distribution-karaf/0.4.0-Beryllium/distribution-karaf-0.4.0-Beryllium.tar.gz

133-6

Available: http://www.brianlinkletter.com/using-the-opendaylight-sdn-controller-with-the-mininet-network-

emulator/#more-4419

[7] M. Casado, N. Foster, and A. Guha. “Abstractions for Software-Defined Networks,” vol. 57, pp. 86-95.

[8] Communications of the ACM. (2014). See also The OpenFlow switch. [Online]. Available:

http://www.openflowswitch.org.

