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Abstract - New Adaptive Fuzzy Sliding Mode Control (AFSMC) method is proposed for semi-active control of buildings under 

earthquake excitations. The proposed method has the important advantage of being model-free, and therefore, can cope with 

uncertainties in the structural model, high nonlinearities in the behaviour of MagnetoRheological (MR) dampers and the random nature 

of the earthquake excitations. The proposed approach encompasses a fuzzy system and a robust controller. The fuzzy system mimics an 

ideal sliding-mode controller, and the robust controller compensates for the difference between the fuzzy controller and the ideal one. 

The parameters of the fuzzy system, as well as the uncertainty bound of the robust controller, are tuned adaptively. The adaptive laws 

are derived in the Lyapunov sense to guarantee the asymptotic stability of the controlled system. The AFSMC controller determines the 

needed control force, and an internal force-following loop approximately generates the required interaction force by intermittent 

activation of the semi-active dampers (Clipped algorithm). A three-story benchmark building with only one MR damper in the first 

floor is considered. By comparing the structural responses in the uncontrolled case, AFSMC/Clipped system and an H2-LQG/Clipped 

control strategy, advantages of AFSMC method are demonstrated.  
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1. Introduction 
In order to save lives and reduce the costs associated with the hazards of earthquakes and strong winds, many efforts 

have been reported in the literature and also physical implementations to alleviate structural vibrations under such natural 

disasters. Depending on the type of employed control devices, control methodologies are classified into active, passive, 

hybrid and semi-active systems. Among these methods, the semi-active methodology is of more interest, because it can 

provide comparable performance to the active methods, yet exerting energy to the building almost as small as passive 

methods. This is particularly important, because the risk of electrical power loss in the event of devastating earthquakes is 

extremely high. 

MagnetoRheological (MR) dampers are probably the most commercial and popular semi-active control devices used for 

vibration reduction of buildings and advanced vehicles. In general, previously proposed control strategies applicable to MR 

dampers may be divided into two categories: (1) Model based approaches and (2) Heuristic or intelligent methods. In the 

model-based control strategies, exact mathematical models of the building and MR dampers are needed [1-3]. However, 

since the modeling process of buildings and, in particular, MR damper involve simplifications and un-modeled dynamics, 

i.e., uncertainties, the performance of the resulting control models may be negatively effected in practical implementations. 

A particular complication, compared to the active methods is that the physical behaviour of MR dampers is highly 

nonlinear and depends on the dynamic interaction with the associated structure. Intelligent control approaches are generally 

divided into neural network, neuro-fuzzy and fuzzy logic based control methods.  In particular, fuzzy controllers have been 

used extensively for the control of structural vibrations. Originally, tuning of fuzzy membership functions and fuzzy rules 

were performed through cumbersome trials-and-errors. The inadequacy of conventional methods motivated new 

optimization algorithms, such as neural networks and the genetic algorithm [4, 5]. Due to the unpredictable nature of 

earthquake excitations, however, non-adaptive methods may not lead to an acceptable performance. Wang [6] introduced 

the Adaptive Fuzzy Logic Control (AFLC) strategy, including an online adjustment method for fuzzy parameters, in order 

to enhance the performance of conventional FLC.  In this strategy, the adaptive nature of the controllers eliminates the 

need for advanced attainment of the system’s dynamic characteristics.  Furthermore, as the controller parameters can be 
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tuned on-line, the fuzzy rules can be roughly specified, or even entirely unspecified in advance. On the other hand, the 

Sliding Mode Control (SMC), which is known to provide excellent stability, robustness with respect to uncertainties and 

external disturbances [7], could lead to degraded steady-state performance.   In particular, extremely rapid switching with 

large control gains on the sliding surfaces could cause unacceptable high-frequency chattering in the control signals. The 

chattering problem can be resolved by applying fuzzy control signals in place of switching functions. As a further control 

performance improvement, AFLC approach may be presented into SMC to arrive at the hybrid adaptive fuzzy sliding 

mode control (AFSMC) strategy [8, 9]. The discontinuous switching function and uncertainty terms of the equivalent 

control are replaced by fuzzy system to reach condition of the sliding mode control and mitigate the chattering 

phenomenon as well as the detrimental effects caused by uncertainties.   The on-line tuning of fuzzy parameters, together 

with online estimation of model uncertainties provides the simultaneous advantages of both AFLC and SMC methods. 

In this article, the AFSMC is employed for semi-active control of buildings. The proposed approach encompasses a 

fuzzy system and a robust controller. The fuzzy system mimics an ideal sliding-mode controller, and the robust controller 

compensates for the difference between the fuzzy controller and the ideal one. The parameters of the fuzzy system, as well 

as the uncertainty bound of the robust controller, are tuned adaptively. The adaptive laws are derived in the Lyapunov 

sense to guarantee the asymptotic stability of the controlled system. The AFSMC controller determines the needed control 

force, and an internal force-following loop approximately generates the required interaction force by intermittent activation 

of the semi-active dampers (Clipped algorithm). A three-story benchmark building with only one MR damper in the first 

floor is considered. By comparing the structural responses in the uncontrolled case, AFSMC/Clipped system and an H2-

LQG/Clipped control strategy, advantages of AFSMC method are demonstrated. 

 

2. Adaptive fuzzy sliding mode control 
Sliding Mode Control (SMC), is known to provide good stability and robustness for control of nonlinear systems. 

Since conventional SMC could lead to unacceptable chattering control signals, it is mimicked by a fuzzy controller. On-

line tuning of fuzzy parameters, together with online estimation of model uncertainties, provides the simultaneous 

advantages of both SMC and AFLC methods. 

 

2.1. Sliding mode control 
The designing procedure of a conventional sliding-mode controller includes two steps: the first is to find a feedback 

controller which causes the system state trajectory to reach the sliding surface s in a finite time and remain there; and the 

second is to guarantee that the obtained trajectory on s is stable using a switching action.  

 

Consider the nth order system that can describe the behavior of building as: 

 
( ) ( ) ( )nx f g u x x  (1) 

 

where 
  1

1 2[ , , ..., ] [ , , ..., ]n n
nx x x x x x Rx is the vector of system states which are assumed to be measurable, Ru  

is the control input, ( )f x  and ( )g x  are smooth functions, which are unknown.  

The tracking error is defined as: 

 

)()()(~ txtxtx d   (2) 

 

where )(txd  is the desired trajectory of system states. The goal is to determine a controller for the system Error! 

Reference source not found. which can make the tracking error converges to zero, i.e. 0)(~lim  txt . 

In case of having uncertainties, the system Error! Reference source not found. becomes: 

 

duxgxfx n  )()()(
 (3) 
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where d  is the lumped uncertainty which is assumed to be bounded as d . By using the time derivative operator

D d dt , the sliding surface becomes: 

 

xDs n ~)( 1   (4) 

 

with 0 a user defined constant. The sliding mode control law is defined as the following:  

 

rbeq uuu   (5) 

 

where the equivalent controller equ  is a feedback linearization controller, obtained from 0s . And the robust 

controller rbu  is designed for compensating the uncertainties, as: 

 

 )sgn(1 sgurb   (6) 

 

By considering the candidate Lyapunov function
21

2
V s , the SMC system, guarantees the stability of the unknown 

systemError! Reference source not found. [8, 9]. 

 

2.2. Fuzzy approximation of sliding-mode control 
Now, assume that the parameters of system are known completely. In such a case, the ideal controller can be obtained 

as 
*

equ u . From practical point of view, the parameters of system may not be specified exactly; so the ideal controller 

cannot be determined according to Eq. Thus, by using the universal approximation capability of fuzzy systems 
*u  can be 

approximated using a fuzzy system. 

Consider a TS fuzzy system with input s  and output fuzu  with rn  fuzzy IF-THEN rules, as: 

 

(7) Rule r : If s  is 
rA

~
 then r

fuz bu
~

         rnr ,...,1  

 

Then the output of the fuzzy system can be written as: 

 

(8) WBBsu T

fuz ),(  

 

where 
1[ ... ]rn

B b b
 
and 

1[ ... ]rn
W w w . Therefore the ideal controller 

*u , can be approximated by an ideal fuzzy 

system ),( ** Bsu fuz and is equal to: 

 

(9)   WBBsuu
T

fuz

**** ˆ),(  

 

where  is the approximation error or the uncertainty, which is assumed to be bounded as: 

 

(10)   

 

Also 
*B is the optimal parameter vector as: 
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(11)  * *argmin T
BB B W u



   

 

2.3. Adaptive fuzzy sliding mode control      

In practice, the optimal parameter vector 
*B  such as the uncertainty bound   , may be unknown. If )ˆ,(ˆ Bsu fuz

be a 

fuzzy system for the approximation of 
*u , as: 

 

 (12) WBBsu T

fuz
ˆ)ˆ,(ˆ   

 

where B̂ is the approximated value of 
*B , then the control law for the AFSMC system, becomes: 

 

(13) )()ˆ,(ˆ suBsuu rbfuz   

 

where the fuzzy controller fuzû is designed for approximating the ideal controller 
*u , and the robust controller rbu is 

designed for compensating the difference between the ideal controller and the fuzzy controller. 

By defining the approximation errors as: 

  

fuzfuz uuu ˆ~ *   (14) 

 

BBB ˆ~ *   (15) 

 

)(ˆ)(
~

tt   (16) 

 

and using (9) and (12), gives: 

 

 WBu T

fuz

~~  (17) 

 

If the AFSMC system is designed according to (13) and the parameter vector of the fuzzy system is adaptively tuned 

according to : 

 

WtsBB )(
~ˆ

1


 (18) 

 

and the robust controller is designed using: 

 

(19) )sgn()](sgn[ˆ gtsurb   

 

and the bound estimation algorithm given by: 

 

(20) )sgn()(
~ˆ

2 gts


 

 

where 1 and 2
 
are the learning rates chosen by the user, then the stability of the AFSMC system will be guaranteed 

[8, 9]. The block diagram of the AFSMC algorithm has been shown in Fig. 1. 
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Fig. 1: Block diagram of the AFSMC algorithm. 

 

3. System modeling      
The performance of the AFSMC algorithm under semi-active approaches of AFSMC/Clipped is demonstrated by 

numerical simulation. A three-story building model which is equipped with one MR damper in the first floor is considered 

as shown in Fig. 2. The MR damper is rigidly placed between the ground and the first floor of the building. The building 

dynamic equations of motion can be written as 

 

(21) gM C K M x     x x x f  

 

where,  Txxx 321 ,,x ,  Txxx 321 ,,  x and  Txxx 321 ,,  x  are the vectors of displacement, velocity and acceleration 

of the building floors relative to the ground respectively and  ,0,0
T

MRff is the vector of the control force. Moreover   

is the vector of control force position,  is the vector of perturbation signals, M is the mass matrix, C is the damping 

matrix and K is the stiffness matrix, which have been given as: 
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In this study, a phenomenological model for the SD-1000 MR damper of the LORD company is used; for which the 

parameters are given by Spencer et al. [10]. The structure model is subjected to the North-South (NS) component of the 

recorded ground acceleration for the 1940 EL CENTRO earthquake. It should be mentioned that for the simulation 

purpose, the earthquake is reproduced at five times the actual recorded rate. 
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Fig. 2: Schematic diagram of a three-story building equipped with a MR damper. 

 

The AFSMC controller determines the needed control force, and an internal force-following loop approximately 

generates the required interaction force by intermittent activation of the semi-active dampers (Clipped algorithm).   

Now, the equations of motion (21) for matching with systemError! Reference source not found. are rewritten as: 

 

(22) ugfx )()()2(

1 xx   

 

where, x is the state vector of the system, u is the force calculated by the controller, i.e. 
AFSMCfu 

 
and 1x is the 

displacement of the first floor relative to the ground. The objective is to control the displacement and acceleration of the 

building floors. For this purpose, the sliding surface is defined as:  

 

(23) 
11

~~ xxs    

 

with 3  . The input membership functions for s are chosen as illustrated in Fig. 3. The initial output membership 

functions are arbitrarily chosen as  ˆ [ 8,0,8]B , and the initial value of uncertainty bound is selected as 0.1 . The 

learning rates are adjusted to 1 =512 and 2  =2315. Following the simulation, the final output membership functions are 

obtained as  ˆ [ 217,0,190]B  and the final value of uncertainty bound is 2750. After the computing of control force, 

the best candidate for conversion is the Clipped algorithm developed by Dyke et al. [1] as:  

 

(24)  MRMRAFSMC fffHVv )(max   

 

where, v is the applied voltage level, maxV
 
is the maximum voltage level, )(H is the heaviside step function, and MRf

 
is the output force generated by the MR damper. The block diagram of the semi-active AFSMC/Clipped system is shown 

in Fig. 4. 
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Fig. 3: Input membership functions of s for AFSMC systems. 

 

 

Fig. 4: Block diagram of the semi-active AFSMC/Clipped system. 

 

4. Results 
The maximum building responses to the EL-Centro earthquake for the uncontrolled case and AFSMC/Clipped system 

are shown in table 1. Here, iX  is the maximum displacement of the ith floor relative to the ground, iD  is the maximum 

inter-story drift (i.e. 1i iX X  ), aiX  is the maximum absolute acceleration of the ith floor, and f is the maximum applied 

control force. Moreover, for the sake of comparison, the results given by H2-LQG/Clipped control strategy [1] have been 

listed in Table 1. It should be noted that, the H2-LQG/clipped control strategy is the most referred semi-active algorithms 

applied on three-story building and any comparison with this method determines the excellence of applied approaches. 
 

Table 1: Maximum building responses due to the 1940 El-Centro earthquake. 
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Fig. 5 shows the time responses of the third floor of the building for the AFSMC/Clipped approach due to the 1940 

EL-Centro earthquake. As Table 1 and Fig. 5 indicate, the AFSMC system have been able to reduce the displacement and 

absolute acceleration responses of the entire building floors quite well compared to the uncontrolled case.  

Fig. 6 compares the maximum building responses for the uncontrolled case, the AFSMC/Clipped systems and the H2-

LQG/Clipped control strategy. Diagram (a) compares the maximum relative displacement, (b) compares the maximum 

inter-story drift and (c) compares the maximum absolute acceleration of the floors. As illustrated, for the case of maximum 

displacements, the AFSMC/Clipped demonstrates a better performance at the first and second floors, while, the H2-

LQG/Clipped method surpasses the AFSMC/Clipped method at the third floor. As shown, AFSMC/Clipped and the H2-

LQG/Clipped controllers have been able to reduce the maximum displacements by average values of 79% and 78%, 

respectively. 

 

 
Fig. 5: Time responses of the third floor of the building for the semi-active AFSMC/Clipped approach. 

 

There is a close competition between the controllers for the maximum inter-story drift, and both could be considered 

as equivalent performers. For the case of maximum acceleration of floors, although both controllers depict similar results 

at the third floor, the AFSMC/Clipped shows its superiority at the first and second floors. In particular, the 

AFSMC/Clipped and the H2-LQG/Clipped controllers have been able to reduce the maximum absolute acceleration by an 

average of 57% and 32%, respectively. Therefore, in the competition between AFSMC/Clipped and H2-LQG/Clipped 

methods, the proposed AFSMC/Clipped wins, for the former reduces the acceleration considerably more than the latter 

while the expenditure of control energy through the MR damper is also kept at a lower value. Fig. 7 shows the MR Damper 

output force for the AFSMC/Clipped approach.  

 

 
Fig. 6: Comparison of maximum building responses in the uncontrolled case, AFSMC/Clipped and H2-LQG/Clipped systems. 
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 Fig. 7: MR damper output force for AFSMC/Clipped approach. 

 

5. Conclusion 
In this paper, a new adaptive fuzzy sliding mode control algorithm was employed for semi-active control of 

earthquake-induced excitations. By applying the AFSMC controller on a three-story benchmark building, it was revealed 

that by using the AFSMC algorithm instead of the H2-LQG strategy and then by converting the force signal into the MR 

damper input voltage, the induced vibrations can be reduced considerably, while the control effort is also reduced. The 

importance of this result is even more highlighted, considering the fact that proposed control method does not use any of 

the model parameters for the calculation of the required control force. The AFSMC/Clipped strategy have been able to 

reduce the displacement and absolute acceleration responses of the entire building floors quite well compared to the 

uncontrolled case. Also, for the case of maximum displacements, the AFSMC/Clipped demonstrates a better performance 

at the first and second floors, while, the H2-LQG/Clipped method exceeds the AFSMC/Clipped method at the third floor. 

Furthermore, there is a close competition between the controllers for the maximum inter-story drift, and both could be 

considered as equivalent performers. For the case of maximum acceleration of floors, although both controllers depict 

similar results at the third floor, the AFSMC/Clipped shows its superiority at the first and second floors.  
 

Nomenclature 
rb  Fuzzy singleton for the output of the rth rule x  Vectors of velocity relative to the ground 

d  Lumped uncertainty x  Vectors of acceleration relative to the ground 

f  Maximum applied control force x  Tracking error 

f  Vector of the control force dx  Desired trajectory of system states 

AFSMCf  Active AFSMC force rA
~

 Fuzzy set of the rth rule 

MRf  MR damper output force B  Fuzzy parameter vector 

rn  Fuzzy rules number B̂  Approximation of parameter vector 

s  Sliding surface B  Approximation error of parameter vector 

u  Control input *B  Fuzzy optimal parameter vector 

*u  Ideal controller C  Damping matrix 

equ  Equivalent Sliding mode controller iD  Maximum inter-story drift of the ith floor 

fuzu  Fuzzy controller K  Stiffness matrix 

ˆ
fuzu  Approximation of fuzzy controller M  Mass matrix 

fuzu  Approximation error of fuzzy controller V  Lyapunov function 

*
fuzu  Ideal fuzzy controller maxV  MR damper maximum voltage  

rbu  Robust controller W  Vector of rules weight 

v  MR damper input voltage  iX  Maximum displacement of the ith floor  

rn
w  Firing strength of the thr  rule aiX  Maximum absolute acceleration of the ith floor 

x  Vectors of displacement relative to the ground 1  First learning rate of AFSMC 
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2  Second learning rate of AFSMC   Vector of perturbation signals 

  Vector of control force position   Approximation error 

  Uncertainty bound   Approximation error bound 

  User defined constant   
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