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Abstract - Lateral torsional buckling is one of the main failure modes in which the beam experiences non-uniform twisting and 

buckling about its weak axis. This study intends to describe lateral-torsional buckling behavior of European wide flange I-section 

beams. An analytical model based on Ritz method is established for doubly-symmeric I section by considering load position. A 

compact closed form equation which can be used for calculation critical elastic lateral-torsional buckling load of Europen wide flange 

I-section (HEA, HEB, HEM profiles) is developed using analytical solutions and dimensionless buckling parameters. The effects of 

slenderness and loading positions on lateral-torsional buckling behavior of beams with wide flange are investigated. The present 

solutions are validated with 1D finite element solutions in which beams are modeled with their exact geometries. Good agreement 

between the analytical and numerical solutions is demonstrated. It is concluded that the lateral-torsional buckling load of European 

HEA, HEB and HEM beams can be determined by presented method and can be safely used in design procedures. 
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1. Introduction 
Lateral-torsional buckling (LTB) is one of the main failure modes controlling the strength of thin-walled structural 

members. Beams are mostly loaded in the plane of the weak axis so that bending occurs about their strong axis for 

economical use of structural material. Beams bending about its strong axis may buckle out of the plane by deflecting 

laterally and twisting as the values of the applied loads reach a limiting state. At this limiting state, the compression flange 

of the member becomes unstable and bends laterally while the remainder of the cross section, which is stable, tends to 

restrain the lateral flexure of the compression flange. The net effect is that the whole section rotates and moves laterally. 

The limit state of the applied loads on the  structural members is called as the critical elastic LTB load. LTB failure occurs 

suddenly in slender thin-walled elements with a much greater in-plane bending stiffness than their lateral bending or 

torsional stiffnesses. LTB should be considered in design of slender beams, beam-columns and cantilevers with insufficient 

lateral bracing due to it may occur long before the bending stress at the extreme fiber of the section reaches to yield point. 

The cross section of the member, the unbraced length of the member, the support conditions, the type of loads acting on the 

member, the vertical positions of the applied loads with respect to shear center are effective on LTB behavior of beams and 

cantilevers.  

The general concept of LTB and the solution of governing differential equation obtained for critical LTB load of 

beams subjected to uniform bending have been well presented in many textbooks [1]–[3]. LTB behavior are also studied 

using numerical approaches such as finite integral [4], [5], finite differences [6]–[10], finite elements [11]–[18]  and finite 

strips methods [19]–[22] in case of different boundary conditions and load types where moment gradient is not constant 

because of the fact that analytical solutions are either too complex or involve infinite series. Energy method is based on the 

equality between the additional strain energy stored during LTB and the additional work done by the applied forces. The 

LTB load is calculated by substituting an approximate buckled shape which satisfies the kinematic boundary conditions 

and corresponds to real mode shape into the energy equation. Kinematic boundary conditions are related to geometrical 

constraints preventing one or more deflections or rotations at the support of the structural members [1]. Extensive studies 

are carried out in order to describe LTB behavior of thin-walled members using energy method. Aydin et al. [23] presented 

a compact closed-form equation to calculate LTB loads of simply supported beams with monosymmetric I-section. Mohri 

et al. [24] recomputed 3-factor formula, which is commonly used for calculation of elastic LTB loads of beams, and 

proposed some improvements. Ozbasaran et al. [25] developed an alternative design procedure for cantilever I-section and 
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introduced a parametric formula based on energy method to calculate LTB load. The proposed design procedure was 

compared with code specifications and FEA. Kim et al. [26] studied LTB of castellated beams. The bracing stiffness 

requirements of monosymmetric I-beams with discrete torsional braces under pure bending condition was investigated 

Mohammadi et al. [27]. Non-linear stability model for LTB of beam-column elements with monosymmetric I-section 

including pre-buckling deflections are established by Mohri et al. [28]. Magnucka-Blandzi [29] investigated beam-columns 

with I-section subjected to a uniformly distributed transverse load, small axial force and two different moments located at 

its both ends. Stiffness reduction method for the flexural–torsional buckling assessment of steel beam-columns subjected to 

major axis bending and axial compression was examined by Kucukler et al. [30]. The flexural-torsional buckling of 

functionally graded open-section beams with various type of material were investigated by Nguyen et al. [31]. Chan [32] 

established a kinematic model based on energy method for tapered beam-columns. Yang and Yau [33] studied finite 

element model for beams that takes into consideration the effect of non-uniform torsion and geometric nonlinearity. Yuan 

et al. [34] developed an analytical model to determine LTB behavior of steel web tapered tee-section cantileves. Analytical 

solutions  are validated with finite element analysis using Ansys sofware. Good agreement between analytical and 

numerical solutions is demonstrated. It is concluded that effect of web tapering on elastic LTB load of  Tee-section 

cantilever depends on the flange witdth of the beam. A general variational model based on Ritz method including pre-

buckling deflection was introduced in order to analyze the LTB of monosymmetric and doubly symmetric tapered beams 

and cantilevers [35]–[38]. Benyamina et al. [39] introduced an analytical formula to assess LTB behavior of doubly 

symmetric web tapered I beams in function of the classical stiffness terms, the load height level and the tapering parameter.  

In this study, LTB behavior of European wide flange I-section beams (HEA, HEB, HEM profiles) are investigated. A 

simplified closed-form equation which can be used for calculation of the elastic LTB loads of beams with wide flange  are 

developed using Ritz method, dimensionless slenderness and load case parameter. Load case parameter are calculated for 

six load cases by considering three load positions which are top flange, shear center and bottom flange. Analytical 

solutions are validated with 1D finite element simulations. Beams are modeled with their exact geometries using 

LTBeamN software. Analytical solutions are in good accordance with numerical solutions. It is found out that the lateral-

torsional buckling loads of European HEA, HEB and HEM beams can be determined by proposed technique.  

 

2. Analytical Method 
The LTB of beam consists of two stages. First, beam bends about its major axis, and then it buckles by bending 

laterally and twisting as the magnitude of the loads acting on the beam reaches to a critical level. Fig. 1 shows the LTB of 

beam with doubly-symmetric I-section subjected to concentrated force that acts transversely at midspan. 
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Fig. 1: LTB of doubly-symmetric beam (a) side view, (b) a-a section. 

 

In Fig. 1 (a), L is the beam length. a-a section of the beam is drawn in Fig. 1 (b). S and C show the shear center and the 

center of gravity of the section, respectively. u is the lateral displacement of the shear center, v is vertical displacement of 
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the shear center and φ is torsional rotation. The strain energy stored in the beam due to lateral bending, warping and torsion 

can be calculated using the following formula [1]: 
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Where E is young modulus, G is shear modulus, Iy is the moment of inertia about the weak axis, Cw is the warping constant 

and J is the torsional constant.  

The work done by the external transverse forces is as [1]: 
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Where Mx is the bending moment about strong axis. The second and third terms in Eq. (2) are work done by 

concentrated (P) and uniformly distributed loads (q)  which are acting outside of the shear center, respectively. Those 

works results from changing of the distance between the application points of the loads and the shear center as cross-

section rotates. Hp and Hq are the vertical distance of the acting point of the concentrated and uniformly distributed loads 

measured from the shear center, respectively. ɸp is torsional rotation at a point in which the concentrated load is applied. In 

Eq. (2), Hp and Hq are positive for loads that act in below the shear center. Assume that when LTB occurs, the lateral 

displacement of beam defined at the shear center and the angle of rotation of the cross-section can be described as follows : 

 

𝑢 = 𝐴 sin
𝜋

𝐿
𝑧 (3) 

 

𝜙 = 𝐵 sin
𝜋

𝐿
𝑧 (4) 

 

Where A and B are the associated displacement amplitudes. Note that the dispalcement functions assumed in Eqs. (3)-

(4) satisfy the simply supported boundry conditions (u=ϕ=0 and d2u/dz2= d2ϕ/dz2=0) at supports (z=0 and z=L). The total 

potential energy (Π=U+V) of the beam given in Fig 1, at a slightly buckled configuration can be written as following 

compact form by assuming that the vertical position of all transverse loads on the beam are same (Hp=Hq=H) and 

substituting displacement functions in Eq. (1) and Eq. (2) : 

 

Π =
𝜋4𝑏2

4𝐿3
[
𝐺𝐽𝐿2

𝜋2
+

𝑎2𝐸𝐼𝑦

𝑏2
+ 𝐸𝐶𝑤] + 𝑍1𝑎𝑏𝑅𝑐𝑟 + 𝑍2𝑏2𝐻𝑅𝑐𝑟 (5) 

 

In Eq. (5), Z1 and Z2 are integral parameters depending on moment gradient about strong axis along the beam length. 

In this study Z1 and Z2 are calculated for six load cases depicted in Fig 2. Rcr is the critical load which can be expressed by 

Eq. (6) depending on the load type acting on the beam. 

 

𝑅𝑐𝑟 = 𝑃𝑐𝑟 = 𝑞𝑐𝑟𝐿 =
𝑀𝑐𝑟

𝐿
 (6) 

 

Where Pcr, qcr and Mcr are critical concentrated load, uniformly distributed load and moment, respectively. It is noted 

that the critical buckling load type varies according to considered loading case. For load case 3 in Fig. 2, the critical LTB 

load is in terms of qcr which implies that the critical values of uniformly distributed load and concentrated load are qcr and 

0.5qcrL, respectively. 
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Fig. 2: Load cases. 

 
Table 1: Z1 and Z2 integral parameters. 

 

Load Type Z1 Z2 

P -0.86685 0.5 

q -0.536234 0.25 

q+0.5qL -0.969659 0.5 

q+qL -1.40308 0.75 

P+P -1.47162 0.75 

M -4.9348 0 

 

When buckling occurs, the total energy function reaches to a stationary condition, which requires 

 
𝜕Π

𝜕𝐴
=

𝜕Π

𝜕𝐵
= 0 (7) 

 

Substituting Eq. (5) into Eq. (7) yields : 
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Eq. (8) and Eq. (9) are standard eigen-value equations. The critical load can be calculated by considering the determinant 

of the coefficients matrix is equal to zero. Finally, LTB load of beam can be determined using following equation: 
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Eq. (10) can be also expressed as following compact form using dimensionless load case parameter KLC and considering 

G=0,385E for steel materials [40].  
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KLC is a dimensionless coefficient, called as load case parameter, which depends on applied load type, the position of 

load respect to shear center and section properties. KLC of a beam which section properties are known can be obtained by 

using Eq. (10) and Eq. (11) for considered load case and load position. In this study, KLC parameters are calculated with 

respect to Sr, which is a dimesionless slenderness ratio given in Eq. (12), for six load cases shown in Fig. 2 by considering 

three different loading position that are top flange, shear center and bottom flange loading. 

 

𝑆𝑟 = (
𝐿𝑡𝑓

ℎ𝑏
)

2

 (12) 

 

Sr-KLC curves are presented in Fig. (3) for European wide flange sections. However, KLC can be calculated more 

accurately by using Eq. (13). 
 

 
Fig. 3: Sr-KLC curves top flange (a), shear center (b), bottom flange (c). 

 

 

 
𝐾𝐿𝐶 = 𝑎𝑆𝑟

𝑚 + 𝑏𝑆𝑟
𝑛 (13) 

 

In Eq. (13), a, b, m and n are curve fitting constants. The values of the curve fitting constants can be obtained from 

Table 2 for considered load type and load positions in the limits Sr≤10 or Sr>10.  
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Table 2: Curve fitting constants for European wide flange sections. 

 

Load 

Position 

Sr≤10 

Load 

Type 
a b m n 

Top 

Flange 

P 2.4693091 1.4858447 0.1306704 -0.6346488 

q 2.7070522 4.2115676 -0.6283092 0.1184201 

q+0.5qL 2.2755482 1.4168861 0.1237324 -0.6313709 

q+qL 0.9594641 1.5582127 -0.6324448 0.1258355 

P+P 1.5037082 0.9397269 0.1230723 -0.6310183 

Shear 

Center 

P 2.9771823 3.1066508 0.0883374 -0.5873335 

q 5.0220617 4.8127693 -0.5873335 0.0883374 

q+0.5qL 2.6615238 2.7772653 0.0883374 -0.5873335 

q+qL 1.8393609 1.9193490 0.0883374 -0.5873335 

P+P 1.8299563 1.7536936 -0.5873335 0.0883374 

M 0.5457162 0.5229737 -0.5873335 0.0883374 

Bottom 

Flange 

P 6.7252056 2.6424210 -0.5402802 0.1161904 

q 9.5188065 4.4716986 -0.5474445 0.1057909 

q+0.5qL 5.5925213 2.4254496 -0.5441228 0.1102070 

q+qL 3.9535132 1.6630534 -0.5429043 0.1119968 

P+P 1.6020637 3.6583103 0.1096498 -0.5445158 

Load 

Position 

Sr>10 

Load 

Type 
a b m n 

Top 

Flange 

P 3.3120118 -0.0019120 0.0452441 0.8601901 

q -0.0000031 5.7564719 2.0093953 0.0278056 

q+0.5qL -0.0000954 3.0849611 1.3022547 0.0346929 

q+qL -0.0001888 2.1054844 1.1330332 0.0376861 

P+P -0.0000431 2.0406919 1.3646838 0.0337865 

Shear 

Center 

P 2.0631105 4.2110105 -0.9627914 0.0003060 

q 6.8073163 3.3351249 0.0003060 -0.9627914 

q+0.5qL 1.8443673 3.7645342 -0.9627914 0.0003060 

q+qL 2.6016438 1.2746297 0.0003060 -0.9627914 

P+P 2.4804735 1.2152644 0.0003060 -0.9627914 

M 0.7397087 0.3624073 0.0003060 -0.9627914 

Bottom 

Flange 

P 4.4627933 4.9265841 -0.0068403 -0.6998030 

q 7.1557048 6.8503280 -0.0058810 -0.7148212 

q+0.5qL 3.9719102 4.0582296 -0.0063187 -0.7073367 

q+qL 2.7487780 2.8775243 -0.0064820 -0.7048245 

P+P 2.6159512 2.6520808 -0.0062664 -0.7081728 

 

At the end of the analytical study, it is concluded that the critical elastic LTB load of European wide flange beams can 

be determined in three steps. To perform this, first Sr is calculated from section properties of the beam. Then, KLC can be 

found for considered loading case and loading position by Eq. (13). Finaly, the critical buckling load can be calculated by 

substituting KLC  into Eq. (11). 

 
3. Numerical Analysis 

Effects of slenderness and load position on LTB behavior of HEA, HEB and HEM beams are studied in numerical 

study. Analytical solutions are compared to 1D finite element analysis where beams are modeled with their exact 
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geometries using LTBeamN software. LTBeamN is capable of computing the elastic out-of-plane instability of both 

doubly-symmetric and mono-symmetric I-section beams by using an eigenvalue analysis. LTBeamN also can be used for 

tapered beams. Buckled shape of 1D beam model are depicted in Fig. (4). 

 

 
Fig. 4: Buckled shape of 1D beam model. 

 

For six different load cases, six sections with different slendernesses were selected to compare the results. HEA100, 

HEB200, HEA300, HEB320, HEM360 and HEM240 sections were used for comparison of  P, q, q+0.5qL, q+qL, P+P and 

M cases, respectively. Beams were loaded on their top flange, shear center and  bottom flange to compare load position 

effect. The elastic LTB loads are calculated using Eq. (13) and LTBeamN 1D finite element model. Results are shown in 

Table (3) –(8) for load type 1-6, respectively. In Table (3) –(8), PE and LT are buckling loads obtained presented equation 

and LTBeamN software, respectively. 

 
Table 3: LTB loads for load case 1. 

 

Load Case 1, P (kN), HEA100 

L Top Flange Loading Shear Center Loading Bottom Flange Loading 

(m) PE LT PE/LT PE LT PE/LT PE LT PE/LT 

2 115.165 117.580 0.98 158.824 161.020 0.99 219.133 219.000 1.00 

3 51.226 52.820 0.97 64.842 66.440 0.98 82.035 83.150 0.99 

4 29.638 30.330 0.98 35.505 36.300 0.98 42.612 43.250 0.99 

5 19.601 19.760 0.99 22.590 22.900 0.99 26.216 26.420 0.99 

6 14.056 13.920 1.01 15.735 15.770 1.00 17.857 17.800 1.00 

7 10.641 10.350 1.03 11.643 11.520 1.01 13.012 12.800 1.02 

8 8.376 7.999 1.05 8.994 8.793 1.02 9.944 9.646 1.03 

9 6.789 6.370 1.07 7.177 6.932 1.04 7.874 7.529 1.05 

10 5.630 5.193 1.08 5.872 5.605 1.05 6.407 6.040 1.06 

 
Table 4: LTB loads for load case 2. 

 

Load Case 2, q (kN/m), HEB200 

L Top Flange Loading Shear Center Loading Bottom Flange Loading 

(m) PE LT PE/LT PE LT PE/LT PE LT PE/LT 

2 1759.527 1739.700 1.01 2613.468 2577.100 1.01 3881.386 3772.700 1.03 

3 444.356 439.090 1.01 619.142 609.200 1.02 863.444 839.840 1.03 

4 176.131 174.320 1.01 233.137 229.590 1.02 308.773 301.790 1.02 

5 88.075 87.520 1.01 112.003 110.640 1.01 142.424 139.750 1.02 

6 50.670 50.380 1.01 62.428 61.720 1.01 76.883 75.520 1.02 

7 32.002 31.770 1.01 38.434 37.970 1.01 46.147 45.330 1.02 

8 21.599 21.370 1.01 25.402 25.030 1.01 29.885 29.310 1.02 

9 15.320 15.080 1.02 17.703 17.380 1.02 20.487 20.030 1.02 

10 11.293 11.050 1.02 12.855 12.570 1.02 14.677 14.290 1.03 

11 8.584 8.339 1.03 9.646 9.383 1.03 10.890 10.550 1.03 

12 6.690 6.453 1.04 7.433 7.193 1.03 8.314 8.015 1.04 
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Table 5: LTB loads for load case 3. 

 
Load Case 3, q+0.5qL (kN/m), HEA300 

L Top Flange Loading Shear Center Loading Bottom Flange Loading 

(m) PE LT PE/LT PE LT PE/LT PE LT PE/LT 

2 3373.185 3444.000 0.98 5599.600 5690.300 0.98 9302.588 9174.200 1.01 

3 712.6779 731.960 0.97 1159.464 1171.500 0.99 1884.107 1879.700 1.00 

4 248.717 256.510 0.97 392.602 400.010 0.98 619.264 621.480 1.00 

5 113.4849 117.460 0.97 173.481 177.280 0.98 265.230 267.020 0.99 

6 61.03693 63.460 0.96 90.474 92.760 0.98 134.211 135.470 0.99 

7 36.64491 38.290 0.96 52.795 54.390 0.97 76.144 77.200 0.99 

8 23.7883 24.980 0.95 33.400 34.570 0.97 46.944 47.800 0.98 

9 16.36516 17.270 0.95 22.451 23.340 0.96 30.823 31.520 0.98 

10 11.77253 12.470 0.94 15.817 16.500 0.96 21.260 21.820 0.97 

11 8.773271 9.320 0.94 11.568 12.100 0.96 15.254 15.710 0.97 

12 6.727768 7.163 0.94 8.721 9.149 0.95 11.304 11.680 0.97 

 
Table 6: LTB loads for load case 4. 

 

Load Case 4, q+qL (kN/m), HEB320 

L Top Flange Loading Shear Center Loading Bottom Flange Loading 

(m) PE LT PE/LT PE LT PE/LT PE LT PE/LT 

2 3850.613 3834.600 1.00 6426.753 6376.600 1.01 10715.661 10193.000 1.05 

3 862.414 852.290 1.01 1383.629 1345.900 1.03 2218.049 2152.000 1.03 

4 315.437 309.390 1.02 484.437 470.600 1.03 744.263 714.440 1.04 

5 149.310 145.920 1.02 220.155 213.530 1.03 324.952 311.790 1.04 

6 82.641 80.700 1.02 117.539 114.050 1.03 167.355 160.870 1.04 

7 50.749 49.570 1.02 69.949 67.890 1.03 96.484 92.870 1.04 

8 33.544 32.780 1.02 44.989 43.720 1.03 60.358 58.190 1.04 

9 23.415 22.880 1.02 30.667 29.810 1.03 40.158 38.770 1.04 

10 17.047 16.650 1.02 21.865 21.250 1.03 28.033 27.090 1.03 

11 12.831 12.520 1.02 16.156 15.700 1.03 20.334 19.650 1.03 

12 9.921 9.660 1.03 12.290 11.930 1.03 15.218 14.700 1.04 

13 7.845 7.619 1.03 9.577 9.280 1.03 11.690 11.280 1.04 

 

Table 7: LTB loads for load case 5. 

 

Load Case 5, P+P (kN), HEM360 

L Top Flange Loading Shear Center Loading Bottom Flange Loading 

(m) PE LT PE/LT PE LT PE/LT PE LT PE/LT 

3 8279.879 7842.200 1.06 12173.522 11282.000 1.08 17912.686 16886.000 1.06 

4 4313.750 3909.100 1.10 6008.874 5471.500 1.10 8378.242 7838.100 1.07 

5 2672.884 2468.900 1.08 3564.170 3312.300 1.08 4754.544 4385.400 1.08 

6 1834.968 1692.400 1.08 2362.059 2173.800 1.09 3039.924 2809.700 1.08 

7 1347.059 1240.500 1.09 1684.678 1559.800 1.08 2105.895 1945.500 1.08 

8 1036.460 947.850 1.09 1265.508 1171.500 1.08 1544.695 1436.400 1.08 

9 825.609 755.480 1.09 987.848 910.730 1.08 1182.349 1089.100 1.09 

10 675.374 615.120 1.10 794.191 726.490 1.09 935.186 860.700 1.09 

11 564.215 511.090 1.10 653.562 595.520 1.10 759.148 693.930 1.09 
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Table 8: LTB loads for load case 6. 

 

Load Case 6, M (kNm), HEM240 

L Shear Center Loading 

(m) PE LT PE/LT 

3 3840.801 3644.100 1.05 

4 2649.359 2512.100 1.05 

5 2030.806 1913.100 1.06 

6 1654.873 1568.200 1.06 

7 1402.569 1319.400 1.06 

8 1221.383 1137.800 1.07 

9 1084.757 1008.500 1.08 

10 977.877 900.460 1.09 

 

The maximum difference between analytical solutions and 1D finite element solutions in which beams are modeled 

with their exact geometries becomes 10%. At the end of study, it can be concluded that proposed techniques can be safely 

used to evaluate the elastic critical LTB loads of European HEA, HEB and HEM beams. 

 

4. Conclusion 
In this study, an analytical model is introduced to determine the elastic critical lateral-torsional buckling load of 

doubly-symmetric I-section beams. The analytical model includes effects of first-order moment gradient and load position. 

A closed-form equation is developed using analytical solutions and buckling parameters. Load case parameter of presented 

equation is calculated for six different load cases by considering three loading positions those are top flange, shear center 

and bottom flange and expressed as a function of a dimensionless slenderness. After slenderness of wide flange I-section 

beam is determined from section properties of the beam, load case parameter can be obtained for considered loading case 

and load position. Finally, LTB load can be calculated by substituting load case parameter into presented equation. 

Analytical solutions are validated with finite element analysis. It is found out that analytical solutions are in good 

agreement with finite element solutions. Consequently, it is concluded that presented equation can be used for calculation 

of the elastic critical LTB loads of HEA, HEB and HEM beams. 
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