
Proceedings of the 4th World Congress on Civil, Structural, and Environmental Engineering (CSEE’19) 

Rome, Italy – April 7-9, 2019 

Paper No. ICEPTP 149  

DOI: 10.11159/iceptp19.149 

ICEPTP 149-1 

 

Controlling the blind expansion of dockless shared bicycles 
through travel demand identification and prediction  

 

Jian Wang1, Yuan Tian1, Siqing Wang1 
 1School of Transportation Science and Engineering, Harbin Institute of Technology 

73 Huanghe Road, Harbin, China 

wang_jian@hit.edu.cn; 14b932014@hit.edu.cn; annie_wsq@163.com 

 

 
Abstract - Free-floating bike sharing (FFBS) is an innovative bike sharing mode that is expanding rapidly around the world nowadays. 

FFBS has always been known to significantly reduce traffic congestion, urban traffic carbon emissions, noise, and support a greener 

sustainable development of urban environments. However, without knowing the users' travel demand locations and quantity, blindly 

expanding shared bicycles on the market has already caused shared bicycle “disasters” which affect city environment and cause serious 

waste of resources in some Chinese cities. This paper proposes a mid-long term FBBS travel demand identification and prediction 

methodology which is an important support for bike-sharing companies’ in determining the number of shared bicycles’ deployment and 

avoid blind expansion. The methodology first uses a spatial-temporal trajectory clustering algorithm based on an innovative spatial-

temporal distance function. By clustering individual users’ long-term travel trajectories, the regular travel demand and random demand 

can be identified. Then, the total demand to be known of a future period is determined by the sum of two parts, total regular demand 

based on aggregated individual regularities and total random demand predicted based on a proposed MLP Neural Net Model. At last, the 

proposed methodology is tested using a two weeks’ dataset of shared bicycle travel trajectories from Beijing Mobike system. The results 

indicate that the proposed methodology based on regular travel identification and prediction has strong practicability and outperforms 

the method directly using total demand to predict in terms of accuracy. 
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1. Introduction 
Nowadays, promoting cycling is one of the most popular policies implemented by local governments to encourage 

greener mobility and make cities more liveable. In this context, bike-sharing systems are growing rapidly around the world. 

With the rapid development of the internet and smartphone technology, mobile payment has become increasingly prevalent. 

Consequently, free-floating bike sharing (FFBS) systems have been widely adopted in major cities across mainland China 

[1]. FFBS is an innovative bike sharing mode that provide fully dockless services. 

As serving 12 countries and more than 200 cities around the world, an average of 30 million rides per day, over 18.2 

billion kilometres accumulative total travel distance, reducing carbon emissions by 4.4 million tons in around 20 months, 

one Chinese FFBS Enterprise Mobike won the "Earth Guardian" award from the United Nations Environment Programme 

in December 2017, the highest award in the field of environmental protection in the world. The FFBS can significantly reduce 

traffic congestion, air pollution, noise and support a greener growth of urban environments.  

However, some cities have suffered from shared bicycle disasters as blind expansion. Without knowing the users' travel 

demand locations and quantity, blindly putting shared bicycles on the market will lead to excessive shared bicycles with very 

low utilization in some areas, which take up a lot of public space and block the normal travel of citizens, affect the city 

environment and management, becoming “city garbage”. Nevertheless, in some areas where there does have travel demand, 

but the deployment is not enough, which makes it difficult to find shared bicycles and influence users’ travel. Besides, as the 

high cost of operation and maintenance, FFBS enterprises prefer to buy new bicycles rather than recycle them. A large 

number of poorly managed bicycles have become environmental burden as figure 1 shows. By June 2018, China's major 

shared bicycle companies have put in more than 27 million bicycles worldwide and will produce nearly 400,000 tons of scrap 

metal when they are scrapped, which will cause serious waste of resources and damage the environment. 
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This paper proposes a mid-long term FBBS travel demand prediction methodology that can assist bike-sharing 

companies in determining the number of deployment and avoid blind expansion of shared bicycles. The methodology 

first use a spatial-temporal trajectory clustering algorithm to cluster individual users’ long-term travel trajectories to 

identify the regular travel demand and random demand. Then, total regular demand will be identified from obtained 

individual users’ travel regularities and a MLP Neural Net Model is proposed to predict the total random demand of the 

future period to be predicted. At last, future total demand is determined by calculating the sum by adding identified total 

regular demand and predicted total random demand together. Finally, a dataset from Beijing FBBS system will verify 

the practicability and accuracy of proposed methodology. 

The remainder of this article is organized as follows. In the next section related research are reviewed. Then Section 

3 introduces the integrated methodology which can predict future total travel demand based on identified regular demand 

and predicted random demand. Section 4 uses the dataset of Mobike trip data from Beijing for methodology validation 

and presents the results. Section 5 provides the conclusions drawn in this study and suggests future research directions. 

 

 
Fig. 1: Large number of poorly managed bicycles have become burdens to Chinese cities. 

 

2. Literature Review of bike-sharing demand related studies 
The rich data generated by bike-sharing system has given an important way to academics and practitioners to 

analyze travel demand and behaviour. For traditional station-based bike sharing (SBBS), Pierre Borgnat et al. analysed 

demand evolution, daily patterns and trip distributions using real data of SBBS in Lyon. Besides, trip purposes are 

assumed based on spatial-temporal distribution among each group of rentals [2]. Jonathan Corcoran et al. used a novel 

spatial analytical techniques to study the impact of weather conditions and calendar events on the Brisbane’s SBBS 

spatial-temporal dynamics [3]. For new FBBS, Chengcheng Xu et al. developed a dynamic demand forecasting model 

for FBBS using the deep learning approach. Through the spatial-temporal analysis, the results indicate the imbalance of 

travel demand of FBBS. They developed long short-term memory neural networks (LSTM NN) to predict the bike 

sharing trip production and attraction at traffic analysis zones (TAZ) for different time intervals, including the 10-min, 

15-min, 20-min and 30-min intervals. The experiment results validated the developed LSTM NN can be used to predict 

the gap between sharing bike inflow and outflow [4]. Aritra Pal et al. studied the mobility patterns and imbalance of an 

FFBS by analysing its historical trip and weather data. They proposed a simple method to decom-pose continuous 

variables into binary variables and two stage models that consider interactions between independent variables and 

improves the (quasi-)Poisson regression model [5]. Yu Shen et al. adopted spatial autoregressive models to analyse a 

dataset of GPS data of one Singapore FFBS operators for spatial-temporal travel patterns of bike usage in Singapore [6]. 

Maria Bordagaray proposed a data mining algorithm to analyze the bike usage casuistry within a sharing scheme. The 

proposed algorithm is a powerful tool to characterize the actual demand for bike-sharing systems [7]. Leonardo 

Caggiania et al. proposed a comprehensive dynamic bike redistribution method. The method starts from the prediction 

of the number and position of bikes over a system operating area and ends with a relocation Decision Support System. 
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The method solves the imbalance of bicycles between zones owing to one-way trips. A test case study with a detailed 

sensitivity analysis showed the effectiveness of the suggested method [8]. 

However, the existing related literatures that studied the mobility patterns and short-term travel demand prediction at 

traffic analysis zones are aiming at solving bike demand imbalance problem and redistribution.  Research that related to 

long-term travel demand identification and prediction for controlling deployment and avoiding blind expansion is very 

limited. 

   

3. Methodology 
3.1. Spatial-temporal distance function 

Spatial-temporal distance function considers spatial distance, direction distance and temporal distance here is to calculate 

how far apart trajectories are. Reasonable distance function will be the premise of successful clustering. Figure 2 is an 

illustration of spatial-temoporal distance between trajectories. Si and Ei are starting point and ending point of Line segement 

Li, Sj, Ej are starting point and ending point of Line segement Lj. PSi and PEi are the projection points from Si and Ei onto Lj, 

respectively. tSi, tEi, tSj, tEj are corresponding timestamp to strating points and ending points.θis the included angle between 

Li and Lj. 

 
Fig. 2: Illustration of spatial-temporal distance between trajectories. 

 

Spatial distance (SpaDist) is to measure the geographic distance difference between trajectories. Here, we followed the 

formula in [2].The spatial distance measure formula is as below: 
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Time distance (TimeDist) is to measure the time difference between trajectory segments as shown below. 

Time mentioned here is unrelated to date, and just takes 24h as a cycle. 
 



 

 

 

 

ICEPTP 149-4 

 
                 ( if  12 )

2 2 2 2
,

24   ( if 12< 24 )
2 2 2 2

Sj Ej Si Ei Sj Ej Si Ei

Sj Ej Si Ei Sj Ej Si Ei

i j

t t t t t t t t

TimeDist L L
t t t t t t t t

    
  


 

       


    

 (3) 

 
At last, the min-max normalisation to scale each distance measure into the unit range [0,1] is used to eliminate the 

scaling problem of above three measures. Besides, we set a SpaDist threshold of 500 based on considering the practical 

significance. If the SpaDist is greater than 500, the normalized SpaDist value will be set as two. The Spatial-temporal distance 

(Spa-timeDist) can be computed as below: 
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(4) 

 

Where SpaDist(Li,Lj)
*, DirDist(Li,Lj)

* and TimeDist(Li,Lj)
* are min-max normalised distances correponded to 

SpaDist(Li,Lj), DirDist(Li,Lj) and TimeDis (Li,Lj). 1W , 2W and 3W  are relative weights for SpaDist(Li,Lj)
*, DirDist(Li,Lj)

* 

and TimeDist(Li,Lj)
*. In this paper, we use the same equal weight for these different distances. 

 
3.2. Spatial-temporal trajectory clustering based on Two Step algorithm 

The aim of clustering analysis of individual user-based long-term travel trajectory data is to identify the regular travel 

users and their regular travel demand, random users and random trips. 

Two Step clustering algorithm belongs to Hierarchical Algorithms. The first step is to compress the original input data 

into sub-clustering which is convenient for processing. The second step is to merge small sub-clusters into larger and larger 

clusters step by step through hierarchical clustering. The algorithm does not need to define the number of clusters in advance, 

but automatically obtains the best clustering scheme by evaluating the generated clustering results. Xueling Wu et al. [9] 

applied Two step clustering algorithm to classify the deformation states of two typical colluvial landslides in the Three 

Gorges, China. The results validated the effectiveness of the Two Step algorithm.  

The first step is pre-clustering stage, the clustering feature tree (CF tree) algorithm is used here. Firstly, the trajectory 

data in the dataset are read one by one and inserted into the CF tree to achieve the growth of CF tree. When the growth of 

CF tree exceeds the threshold volume, the possible outlier trajectory of CF tree is removed first, then the spatial threshold is 

increased and the CF tree is reduced. Then the outlier trajectory of CF tree without reduction is inserted into the CF tree. 

After traversing the data, the real outlier trajectory is the potential outlier trajectory that cannot be inserted into the CF tree. 

Finally, the clustering features of the final CF leaf element corresponding to the sub-cluster are output to the second step of 

the algorithm.  

According to the clustering characteristics of each trajectory sub-cluster of the final leaf element of CF tree obtained in 

the pre-clustering stage, the trajectory sub-cluster CT={CT1, CT2,... CTn} is clustered twice. The agglomerative hierarchical 

clustering method is used in the clustering stage. This method recursively merges the nearest trajectory clusters to cluster. 

Searching for the two sub-clusters with closest spatial-temporal distance from n trajectory sub-clusters CT1, CT2,... CTn and 

merge them into a new cluster. Continue searching for the nearest clusters in n-1 clusters and merge them and repeat the 

process until all clusters are merged into one large cluster.In the process of clustering, the first n clusters are merged into the 

last one. If the expected clustering results are s (1 ≤ s ≤ n), the output is the clustering results of the remaining s clusters in 

the clustering process. 

 
3.3. Travel demand prediction based on MLP Neural Net Model 

By clustering each individual user’s travel spatial-temporal trajectories in section 2.2, the users who have regular travel 

demand can be identified. By collecting all the individual users’ regular demand and distinguished random demand, an area’s 

total travel demand can be divided into two parts, total regular demand and total random demand. The prediction algorithm 

in this paper assumes that the regular travels will recur regularly over a period of time, that is, during the period to be 

predicted, the users who have regular demand will use the shared bicycles according to the identified travel patterns. 
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For the total random travel demand of an area, a MLP Neural Net Model will be used for prediction in this paper. MLP 

Neural Net Model is a class of feedforward artificial neural network. An MLP consists of, at least, three layers of nodes: one 

input layer, one or more hidden layers and one output layer [10]. MLP can be seen as a directed graph, consisting of multiple 

node layers, each layer connected to the next layer. In addition to input nodes, each node is a neuron (or processing unit) 

with a non-linear activation function. A supervised learning method called back propagation algorithm is often used to train 

MLP. Its multiple layers and non-linear activation distinguish MLP from a linear perceptron. When the input is applied to 

the network, the network solution is compared with the target solution designed for the network, and then the learning error 

is calculated and used to adjust the network parameters [11]. 

Due to the limited period of experimental data, this paper proposes a model to predict travel demand of a day. The 

created network has four input variable parameters such as weather condition and day of week. And the output variable 

parameter is the bike-sharing travel demand of an area. Therefore, the neural network is designed with four neurons in the 

input layer and 1 neuron in the output layer as shown in figure 3. The MLP consists of four layers (an input and an output 

layer with two hidden layers) of nonlinearly-activating nodes. If data permits, adjusting the input variable parameters of the 

model, travel demand of week, month, quarter and even year can also be predicted. 

 
Fig. 3: A MLP neural net model to predict random travel demand constructed in this paper. 

 

The final total travel demand of a certain area in the future will be equal to the identified regular travel demand plus 

the predicted random demand. 

 

4. Application to Mobike FFBS 
4.1. Data Description 

A dataset from Beijing Mobike system is used to validate the methodology. It is very popular to use FFBS in Beijing, 

no matter residents or travelers, no matter commuting travel or casual travel. The dataset contains of 349,693 users’ 3,210,496 

Mobike trips from May 10 to May 16, and from May 18, to May 24, 2017. The data fields contain User ID, Order ID, Bike 

ID, Biketype, Start time, Start location and End location of a given record. In this paper, 10 areas on map are selected from 

Beijing Fengtai District, and all trips whose starting location coordinates fall within 10 areas are selected from Beijing 

Mobike dataset for experiment research. 

 
4.2. Results  

As the prediction target of the experiment in this paper is the travel demand of a day, May 19 and May 23 which are 

sunny and rainy days respectively are selected for predicting. The model uses data from May 10 to May 18 for May 19’s 

prediction and uses data from May 10 to May 22 for May 23’s prediction. 
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Based on spatial-temporal trajectory clustering algorithm descripted in section 2.2, all individual bike-sharing users 

involved in 10 areas were clustered. Figure 4 shows some of the individual users’ spatial-temporal trajectory clustering 

results based on dataset from May 10 to May 22. The three coordinates in figure 4 are longitude, latitude and time, 

respectively. The arrows indicate the direction of the trips. The red directed line segments are outlier trajectories and the 

other colours represent the clusters. The users of ID 3967 and ID 6819 have both regular travel trajectory clusters and 

outlier trajectories. The regular travel trajectory clusters are identified as regular demand. The red outlier trajectories are 

identified as random demand. The users of ID 8087 and 1247 are very regular travel users who do not have random 

travel trips. 

 

 
Fig. 4: Some of the individual users’ clustering results. 

 

Separating the individual users’ regular demand and random demand from spatial-temporal trajectory clustering 

results, and then, identify the total regular demand that will recur of an area on the day to be predicted and predict total 

random demand based on MLP neural net model of the corresponding area. At last, calculate the sum demand of 10 

areas respectively by adding identified total regular demand and total random demand together. Fig. 5 shows the final 

experimental results. As shown in the figure, the ten areas selected in the experiment are from Fengtai District, Beijing. 

Among the 10 areas, the largest area is 1.27 km2 and the smallest one has only 0.18 km2. Visualized results of predicted 

demand and real demand for the two days of May 19 and May 23 are displayed in each area. The maximum prediction 

error in ten areas is 102 and the minimum error is just 4.  

Besides, in order to evaluate the feasibility and accuracy of proposed methodology, we also carried out the 

comparative experiment using only the MLP Neural Net Model to predict. The comparative experiment adopt the 
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traditional way that most demand prediction related literatures used, it is, using historical total demand to predict future 

demand directly without separating regular demand and random demand. The mean absolute deviation (MAD) of prediction 

prediction results of each model are shown in Table 1.  

On the whole, the proposed methodology has higher prediction accuracy than using only MLP Neural Net Model, the 

average value of 10 areas’ MAD is 42.33 and 54.56 respectively. For the results using proposed methodology, the maximum 

MAD among ten areas is 79.5 belongs to the largest area. The minimum MAD is just 8.5. Correspondingly, the results using 

MLP Neural Net Model only has the maximum MAD of 97 and minimum MAD is 21.5. Experimental results suggest that 

the proposed method is a feasible method that can improve the accuracy compare with traditional prediction model. 

 

 
Fig. 5: Comparisons between predicted demand and real demand in ten areas. 

 

Table 1: Comparisons of prediction results between proposed methodology and using MLP Neural Net Model only.  

 

Area No. 

Mean Absolute Deviation of two days’ prediction 

results (MAD) 

Proposed methodology MLP Neural Net Model 

only 

1 79.5 97 

2 8.5 52.5 

3 58.5 74.5 

4 36.5 51.5 

5 33 72 

6 73.5 52.5 

7 43 45.5 

8 31 21.5 

9 17.5 24 

10 45 31 
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5. Conclusion 
This paper contributes a novel method of predicting mid-long term FBBS travel demand, aiming to assist bike-

sharing companies in determining the number of deployment and avoid the waste of resources and environmental 

hazards caused by blind expansion of shared bicycles. Specifically, a spatial-temporal distance function is determined 

and a spatial-temporal trajectory clustering based on Two Step algorithm was proposed for identifying the individual 

users’ regular travel demand and random demand. Then, a MLP Neural Net Model was used for predicting total random 

demand based on the clustering results. The final predicted total demand equal to the identified regular travel demand 

plus the predicted random demand. At last, a numerical study using dataset from Beijing Mobike system is used for 

feasibility verification of the proposed methodology. By comparing the results with a comparative experiment using 

traditional historical total demand based prediction model, the proposed methodology in this paper has higher prediction 

accuracy. 

However, as the very limited experimental data, we can only construct and validate a model of the prediction target 

for one day. Future work will collect larger and longer period FBBS dataset and build model with more variables for 

demand prediction of month, quarter and year. 
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