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Abstract-In the present work a numerical method is proposed in order  to optimize the thermal performance of 

finned surfaces. The bidimensional temperature distribution on the longitudinal section of the fin is calculated by 

restoring to the finite volumes method.  The heat flux dissipated by a generic profile fin is compared with the heat 

flux removed by the rectangular profile fin with the same length and volume. In this study it is shown that a finite 

volume method for quadrilaterals unstructured mesh is developed to predict the two dimensional steady-state 

solutions of conduction equation, in order to determine the sinusoidal parameter values which optimize the fin 

effectiveness. In this scheme, based on the integration around the polygonal control volume, the derivatives of 

conduction equation must be converted into closed line integrals using same formulation of the Stokes theorem. The 

numerical results show good agreement with analytical results. To demonstrate the accuracy of the method, the 

absolute and root-mean square errors versus the grid size are examined quantitatively. 
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1. Introduction 
In many engineering sectors, where high thermal fluxes must be transferred, the finned surface 

power removers are today an usual tool. Since finned surfaces allow evident improvements in heat 

transfer effectiveness, the heat exchangers field is one of the most interested in their applications. 

Moreover new industrial sectors present an increasing interest in the introduction of extended surfaces for 

heat flux removal. In particular, the electronics industry has promoted a new interest in developing heat 

removers, aimed at transferring heat from electronic components to the environment, in order to reduce 

the working temperature and to improve the characteristics and the reliability (A.  Bar-Cohen and A. D. 

Kraus), (C. W. Leung, S. D. Probert),(G. Fabbri). 

This study is motivated by the need for a numerical approach that is not only capable of performing 

accurate computations but that also provides an easier way to implement these computations. Our 

objectives is to develop a simple and accurate procedure to deal with curved boundaries, which capable of 

achieving second order accuracy with relative economy, for heat transfer and flow problem, employing 

unstructured mesh. For this objective, we develop a method based on same formulation of the Stokes 

theorem. For testing our method, we consider the computation of passive scalar in fin profile, the 

numerical method calculates the heat flux dissipated by the sinusoidal profile heat remover on the basis of 

the bidimensional temperature distribution on its longitudinal section, which is obtained with the help of 

our method. 

 

2. Fin Model 
In the orthogonal coordinate system we will refer to a heat remover with longitudinal section 

symmetrical with respect to the x axis and with a rectangular profile, as shown in Fig. 1, then with the 

proposed model  that described by the sinusoidal function y(x), as shown in Fig. 2. The fin width and 

length L, is immersed in a fluid with a constant bulk temperature   . Moreover, the fin base temperature 

   is known.  

In order to calculate the heat flux removed by such a fin it is necessary to determine the temperature 

distribution in the longitudinal section (plane xy). This distribution must satisfy the Laplace’s equation: 
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 and   being the convective heat transfer coefficients for the longitudinal fin surface and for the final 

surface and for the final transversal one, respectively,   being the thermal conductivity of the fin. Due to 

the complexity of the problem it is convenient to determine the temperature distribution numerically using 

for example our method.       
     

 
 

 

 

 

 

 

 

 

 

 

 

 
Fig.1. Longitudinal section of a symmetrical profile for an rectangular profile. 

 

3. Effectiveness of the Fin 
The fin performance can be evaluated on the basis of the compared effectiveness, i.e. the ratio 

between the heat flux (  ) dissipated by the heat remover with a generic profile and the heat flux (  ) 

removed by a fin of the same volume and length and with rectangular profile: 
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Let us then consider a rectangular fin of width 2 ,̅  ̅being the average value of f(x): 
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The temperature distribution on the longitudinal section of such a fin must satisfy equation (1), the 

boundary conditions (2)-(4) and the following: 
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Since both longitudinal and final transversal surfaces are plane we can assume   equal to  . By 

integrating equation (1) with the above boundary conditions the following solutions is obtained (H. S. 

Carslaw and J. C. Jaeger): 
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being   the solution of the equation: 
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The heat flux dissipated for unit of length is then: 
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We can calculate the heat flux dissipated by the remover for unit of width in the following way: 

 

    (∑    (      )     (     ))            (12) 

 

   being the thermal conductance between the fin base and the ith element, where it is zero for all the 

elements which are not adjacent to the  fin base. While     being the thermal conductance between the 

fin base and the coolant fluid. 

 

3. Numerical Procedure  
We now propose the numerical method which is able to determine the values of the fin profile 

describing parameters which allow the highest compared effectiveness. We will consider heat removers 

for which the profile function  ( ) has a sinusoidal form and we have 2 cases: 
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     being the amplitude and length of the sinusoid respectively.  

By increasing the number of the sinusoid more and more articulate fin profiles will be taken into 

account. 

The Laplace’s equation is integrated in space using a finite volume method that is developed for an 

unstructured grid made up of quadrilaterals (G.K. Despotis, and S. Tsangaris), (S. Boivin, F. Cayré, and J. 

M. Hérard), (N. Piskounov). 

For the integration around finite volume, the derivations of the flow equation must be converted into 

closed line integrals using same formulation of the Stokes theorem, which is described by the following 

equation:  
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Fig. 2.Formulation of Stokes’s theorem. 

 

Where   ⃗⃗⃗⃗  is the elementary arc,    is the elemntary surface and is the normal vector to this surface. 

The computational domain is discretized on a quadrilateral unstructured grid where each node is the 

centre of polygonal cell constituted of four elements; all computed variables are stored at the centres of 

the polygonal as: 

 

3. 1. Approximation of the First Derives 
The convective terms are calculated at the node P (fig.2). The nodal finite volume descritization 

scheme is used for the discretization of the convective terms that appear in the governing equation. The 

first differences are calculated as: 
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Where   is the area of the polygonal control volume (1,2,3,…NE), T the temperature and x,yare the 

coordinate of the polygonal vertices, and I refers to the vertices number of external polygonal control 

volume. 

 

3. 2. Approximation of the First Derives 
This terms must be calculated at the node P and this achieved by computing the second order 

derivatives at the same point. The required second differences may be computed as: 
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   is the area of polygonal control volume (2,4,…NE) (fig.2) and I refer to the vertices number of 

internal polygonal control volume. Where, the first differences at the middle of the edge are defined as: 
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  is the area of the quadrilateral control volume ((1),(2),(3),(4))(Fig.2.) and the four vertices of 

quadrilateral control volume. 

 
Fig. 3.The computational control volume structure. 

4. Results  
       We take the results of our numerical method for the problem considered: 
 

4. 1. Errors and Convergence 
We define two different errors to examine the numerical solution: 

• Absolute Errors: 
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This gives an average absolute error: 
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      To quantitatively examine the convergence of the mean error and mean square error are not presented 

according to the mesh grid in the Fig. 4 for no meshes studied, we note that the errors increases lightly 

refining the mesh. 

     In Fig.5 below we clearly see the temperature distribution in different grid size and influence of the 

mesh refining on the distribution where we approach to the exact solution. 

 

 
Fig .4.Theaverageandrmserroraccording tothe grid size. 
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Fig .5 . The temperature distribution in different grid size. 

 

 

The proposed numerical method has been utilized in order to optimize the sinusoidal profile of 

aluminium fins. For the finite volumes model parameters, the values are reported in table 1 have been 

assumed. 

The coefficient h has been assumed constant and equal to 100 w /m²°k. 

The numerical method was utilized by choosing first of all the beginning of the function f(x), once 

from the top and in the second time from the lower (Fig.6), then we compared the effectiveness of the 

sinusoidal profile with the rectangular. 
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Fig. 6. The proposed geometries to compared the effectiveness according to the function f(x). 

 
The compare effectiveness, in fact, always grows with the fin who started from the lower (first 

undulation down then sublimate)(Fig. 7). 

 
Fig. 7.The compared effectiveness between the two configurations. 

 

5. Conclusion 
 The proposed numerical method seems able to solve various problems of heat transfer especially 

when we have complex geometries and even the problems of optimization of the longitudinal profile of a 

fin, to improve its performance compared to a rectangular longitudinal section of the same volume and 

length.  

 And for the efficiency of the method of the discretization error can be reduced by way of the mesh 

grid is refined and the order of convergence is defined by the mesh refinement that these errors may 

improve. 

The developed method can be easily used to treat: 

 The various problems of conduction and with various boundary conditions. 

 The stationary problem of conduction. 
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Finally, this method can be extended to treat: 

 The advection-diffusion problem or more of a velocity field temperature is taken into account. 

 The flow problem (Navier-Stokes) with complex geometric boundaries, but requires more 

sophisticated that the problem of conduction or advection-diffusion numerical considerations. 
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