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Abstract - Cross-flow tubular heat exchangers are applied as condensers and evaporators in air conditioners and 

heat pumps or as air heaters in heating systems. They are also applied as water coolers in so called 'dry' water 

cooling systems of power plants, as well as car radiators. There are analytical and numerical mathematical models of 

heat exchangers of that type to determine the steady state temperature distribution of fluids and the rate of heat 

transferred between fluids. In view of the wide range of applications in practice, these heat exchangers were 

experimentally examined in steady-state conditions, mostly to determine the overall heat transfer coefficient or the 

correlation for the heat transfer coefficients on the air side and on the internal surface of the tubes. There exist many 

references on the transient response of heat exchangers. Most of them, however, focus on the non-steady-state heat 

transfer processes in parallel and counter flow heat exchangers. In this paper, the new equation set describing 

transient heat transfer process in tube and fin cross-flow tube exchanger will be given and subsequently solved using 

the finite volume method.  
 

Keywords: Tube and plate-fin heat exchanger, Transient response, Plate-fin mathematical model, 

Experimental validation. 

 

 

1. Introduction 
In contrast to the existing methods for modelling transient response of heat exchangers with extended 

surfaces, in which the weighted steady-state heat transfer coefficient on the finned tube side is used, the 

transient temperature distribution will be calculated in each fins )Smith, 1997; Roetzel, Xuan 1998; Taler, 

2009). This allows for computing more exactly the heat flow rate from the fins to the flowing gas. The 

axial heat conduction in the tube wall will be also accounted for. Transient temperature distributions in 

continuous fins attached to oval tubes will be calculated using the finite volume – finite element method 

(Taler, Korzeń 2011a; Taler, Korzeń 2011b). A system of differential equations of the first order for 

transient temperature at the nodes will be solved using the explicit finite difference method. The 

developed method for the determining transient temperature distributions in fins is used in the transient 

analysis of compact heat exchangers to calculate correctly the heat flow rate transferred from the finned 

surface to the fluid. A transient response of the cross-flow tube and fin heat exchangers is analyzed. 

Transient equations for both hot and cold fluid are solved using the finite volume method. 

A mathematical model of a car radiator will be developed and examined experimentally. The automotive 

radiator for the spark-ignition combustion engine with a cubic capacity of 1580 cm3 is a double-row, two-

pass plate-finned heat exchanger. The radiator consists of aluminium tubes of oval cross-section. The 

cooling liquid flows in parallel through both tube rows. A transient response of the tube and plate fin heat 

exchanger due to step change of air temperature will be modeled using the developed method. The 
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numerical model was validated by comparison of outlet water and air temperatures obtained from the 

numerical simulation with the experimental data.  Good agreement between the numerical predictions and 

experimental results has been found.  

 

2. Mathematical Model of One-row Heat Exchanger 
A numerical model of a cross flow tubular heat exchanger, in which air flows transversally through a 

row of tubes (Fig. 1) will be presented. The system of partial differential equations describing the space 

and time changes of: liquid T1, tube wall Tw, and air T2 temperatures are, respectively 
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where 2T denotes the mean air temperature over the row thickness, defined as 
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The symbols chx x L  and 2y y p  in equations (1-3) stand for dimensionless coordinates. 

The numbers of heat transfer units 
1N  and 

2N  are given by 
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where:  /ch fs L n , wrg r w chA n U L , zrg r z chA n U L . 
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The symbols in equations (1-6) denote: 

 

1 1r w chm n A L  ,   2 1 2 2r oval f fm n p p A s n    , w r m w ch wm n U L   

 1 2f oval f wm p p A    , baπAw  ,   wwoval δbδaπA  ,   / 2m w zU U U  . 

 

The subscript w refers to the wall, f to the fin, and m to the mean value. 

The weighted heat transfer coefficient oh  is defined by  
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The initial temperatures of both fluids are equal and amount to T0. The initial conditions are 
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The boundary conditions have the following form 
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where   and   are functions of time describing the variation of  the inlet liquid temperature and inlet air 

temperature. The initial boundary problem formulated above (1–14) applies to heat exchangers made of 

bare tubes and also from finned ones. For bare tubes mf  is equal to zero. 

 

a) b) 

 
 

 

Fig. 1. Scheme of the analyzed heat exchanger (a) and control volume (b). 
 

The transient fluids and tube wall temperature distributions in the one-row heat exchanger (Fig. 1) 

will be determined by the explicit finite difference method. To calculate time dependent efficiency ηf  of 

the rectangular fin attached to an oval tube the finite volume – finite element method will be used. 

 

2. 1. Finite Difference Model of the Heat Exchanger 
When actual heat exchangers are calculated, the thermo-physical properties of the fluids and the heat 

transfer coefficients depend on the temperature of the fluid, and the initial boundary problem (1-14) is a 
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non-linear one. In such cases the Laplace transform cannot be applied. The temperature distribution 

T1(x
+
, t), Tw(x

+
,t), and T2(x

+
, y

+
, t) can then be found by the explicit finite difference method. In that 

method, the time derivative is approximated by a forward difference, while the spatial derivatives are 

approximated by backward or central finite differences. The equations (1–3) are approximated using the 

explicit finite difference method as follows (Fig. 1b): 
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The notation used in Equations (15-18) is illustrated in Fig.1. Since the second derivative in Eq. 2 was 

approximated by the central difference quotient then imaginary nodes at the ends of the tube are 

necessary. The boundary conditions (13) and (14) are approximated as follows 
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Solving Eqs (19) and (20) for ,0wT  and , 1w NT   gives  

 

,0 ,1w wT T  and , 1 ,w N w NT T  .           (21) 

 

Equation (21) is accounted for in Eqs (16) for i = 1 and i = N. The numbers of nodes are shown in Fig. 2. 

The notation in Fig. 2 is as follows:   iTIW ,11  ,   '

,21 iTIP  ,   ''

,22 iTIP  ,   iwTIR ,1  . 
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Fig. 2. Finite difference grid used in the calculation of temperature distribution; P1(I) – inlet air temperature, R1(I) – 

tube wall temperature, P2(I) – outlet air temperature. 
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where 1/x N   . 

 

Equation (23) was derived assuming that 
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n
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f i  is negligible. The initial conditions (8–10) and the boundary conditions (11-12) 

assume the form: 
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- boundary conditions 
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In order to ensure stability of the calculations by the explicit finite difference method, the conditions of 

Courant–Friedrichs–Lewy must be satisfied (Press et al., 2007) 
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To avoid numerical diffusion the time step should not be too small (Press et al., 2007). Because of the 

high air flow velocity w2, the time step t, resulting from the condition (32) should be very small, in the 

range of tens of thousands of a second. The liquid, air and tube wall temperature distributions are 

calculated using the formulas (22) and (24) taking into consideration the initial (25-28), the boundary 

conditions (21), (29-30), starting at n = 0. To compare simulation and measurement results, a simple 

model of the thermocouple was used to calculate thermocouple response Tth(t), when fluid temperature 

Ta(t) is known from the numerical simulation. The transient response of the thermocouple can be 

described by a simple differential equation (Jaremkiewicz et al., 2009) 
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where  /th th th th thm c h A   is the time constant of the thermocouple. The symbols in equation (33) are: 

mth - thermocouple mass, cth - specific heat capacity of the thermocouple, hth - heat transfer coefficient on 

the surface of the thermocouple, and Ath - area of the outside surface of the thermocouple. Approximating 

the time derivative in Eq. (33) by the central difference quotient and transforming Eq. (33) gives 
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where  1n

th th thT T t t   ,  1n

th th thT T t t   , and 
tht  is the sampling time interval during temperature 

measurement by means of the data acquisition system. The time constant 
th of the thermocouple is a 

function of air velocity wa at the cross section where the air temperature was measured (Jaremkiewicz et 

al., 2009). This time constant of the thermocouple depends on air velocity and was approximated by the 

following function 
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where the time constant 
th is expressed in s and air velocity wa in m/s. 
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2. 2. Modelling of Transient Heat Transfer through Rectangular Fins 
The method presented in (Taler, Korzeń 2011a; Taler, Korzeń 2011b) was used to calculate 

transient temperature distribution in the fins and subsequently time dependent fin efficiencies. Transient 

temperature distributions in continuous fins attached to oval tubes were calculated using the finite volume 

– finite element method. The continuous plate fin is broken into the imaginary fins. The imaginary fin 

model is divided into triangular elements and then finite volumes were formed around the nodes by 

connecting triangle gravity centres with side centres of triangles (Fig. 3a). After calculating the 

temperature distribution, the heat transferred from the fin to the environment and fin efficiency will be 

computed and compared with the results obtained by using the commercial software ANSYS 11.0. The 

fin was divided into 19 finite volumes (Fig. 3a). The lateral surfaces: 4-19, 1-13, 2-3 are thermally 

insulated, while on the surfaces:4-6-3 and 1-5-2 convection heat transfer occurs. The computations were 

carried out for the following data: c = 896 J/(kg·K),  = 2707 kg/m
3
, k = 207 W/(m·K), δf = 0.08 mm, Tf = 

0 
o
C, Tb = 100 

o
C, T0 = 0 

o
C, h = 50 W/(m

2
·K). 

 

a) b) 

 

 

 
 

Fig. 3. Fin attached to oval tube (a) and time changes of fin temperature at nodes 1 and 2. 

 

The fin efficiency was also determined based on the temperature distribution obtained by the developed 

method 
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where the symbols denote: A123,i – surface area of the ith triangle, To,i – fin temperature at the gravity 

center of the ith triangle, N – number of triangles, Al,j –  area of the jth lateral surface with the thickness δf, 

,l jT – mean temperature of the jth lateral surface with the thickness δf , Nl  – number of lateral surfaces 

with the thickness δf .The comparison of the fin efficiency calculated from the expressions (36) for the 

FVM-FEM mesh shown in Fig. 3a and ANSYS results obtained for very fine mesh is presented in Table 

1. 

 
Table. 1. Comparison of the fin efficiency obtained using the FVM-FEM (Eq.(36)) and  ANSYS software. 

 

h, W/(m
2
·K) 0 25 50 75 100 125 150 175 

Eq.(36) 1 0.9491 0.9081 0.8712 0.8376 0.8070 0.7789 0.7531 

ANSYS 1 0.9502 0.9060 0.8664 0.8308 0.7986 0.7692 0.7424 

 

The accuracy of the present method is very satisfactory. In spite of the coarse finite volume mesh used in 

present method (Fig. 3a.) the coincidence of the calculated efficiencies is very good. The transient 
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response of the fin illustrates Fig. 3b. The agreement of the results obtained by the developed method and 

ANSYS is good. Using the present method for calculating the transient temperature distribution and fin 

efficiency, the transient heat flow rate transferred from the hot liquid to cold air can be calculated more 

accurately. 

 

3. The Numerical Model of the Heat Exchanger 
The automotive radiator for the spark-ignition combustion engine with a cubic capacity of 1580 cm

3 

is a double-row, two-pass plate-finned heat exchanger. The radiator consists of aluminium tubes of oval 

cross-section. The water flows in parallel through both tube rows. Figure 4a shows a diagram of the two-

pass cross-flow radiator with two rows of tubes. The heat exchanger consists of the aluminium tubes of 

oval cross-section. There are 2nu = 20 tubes in the upper pass, with nu in the first and second row. 

Similarly, there are 2nl = 18 tubes in the first and second rows in the lower pass, with nl in each of them. 

Mass flow rate of the liquid that passes through the first row of tubes in the upper pass is equal to half of 

the total 
wm  flow rate (Fig. 4a). Fig. 4b shows the division of the first pass (upper pass) into control 

volumes. In order to increase the accuracy of the calculations, a staggered mesh was applied. Water 

temperatures at the control volume nodes are denoted by W1(I) and W2(I) for the first and second rows of 

tubes, respectively. P1(I) denotes air temperature  ' '

,um i amT T t  in front of the radiator, P2(I) denotes the 

air temperature ,
''

,um iT , after the first row of tubes and P3(I) denotes the air temperature, 
'''

,um iT , after the 

second row of tubes in the i -th control volume. Using the notation shown in Fig. 4a the boundary 

conditions can be written in the following form: 

 

             ' ' ' '

,1 ,21 1 2 1 , 1 1,...,w w w amW W T t T t T t P I T t I N      .               (37) 

 

The inlet air velocity, 0w , and mass flow rate, 
wm , are also functions of time. In the simulation program, 

the time variations of  '

wT t ,  tTam

'
,  tw0 , and  wm t  were interpolated using natural splines of the 

third degree. The temperature  wmT t  is a temperature of the water at the outlet of the upper pass, where 

the water of temperature  1 1W N   from the first row of tubes has been mixed with the water of 

temperature  2 1W N   flowing out of the second row of tubes. In the case of the automotive radiator, 

temperature  '

wT t  denotes the water temperature at the inlet to the radiator whereas  tTam

'
 denotes air 

temperature in front of the radiator. 

 

a) b) 

  

 

Fig. 4. Flow arrangement of two row cross-flow heat exchanger with two passes (a) and division of the first pass of 

the car radiator into control volumes (b); 1 – first tube row in upper pass, 2 - second tube row in upper pass, 3 - first 

tube row in lower pass, 4 - second tube row in lower pass,  - air temperature,   - water temperature. 
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Having determined the mean temperatures of the air, 
umT   and 

lmT  , while leaving the second row of tubes 

in the upper and lower pass, respectively, a mean temperature of the air behind the whole radiator, 

  /am u um l lm tT n T n T n     was calculated. If the water and air temperatures are known, the heat transfer rate 

in the first and second rows of tubes in the upper and lower passes can be determined. The total heat 

transfer rate for the radiator was calculated using the formula 

     chl w w w w w a pa am amQ m i T i T m c T T          . The numerical model of the heat exchanger described 

briefly above is used to simulate its transient operation. Before starting transient simulation, the steady-

state temperature distribution of water, tube wall and air was calculated using the steady-state 

mathematical model of the heat exchanger. 

 

4. Experimental Verification 
In order to validate the developed model of the heat exchanger, an experimental test stand was built. 

The measurements were carried out in an open aerodynamic tunnel. The experimental setup was designed 

to obtain heat transfer and pressure drop data from commercially available automotive radiators. Air is 

forced through the open-loop wind tunnel by a variable speed axial fan. The air flow passes through the 

whole front cross-section of the radiator. 

A personal computer-based data-acquisition system was used to measure, store and interpret the data. The 

relative difference between the air-side and liquid-side heat transfer rate was less than 3%. 

Extensive heat transfer measurements under steady-state conditions were conducted to find the 

correlations for the air- and water-side Nusselt numbers, which enable calculation of heat transfer 

coefficients. Based on 47 measurement series, the following correlations were identified: 

 
2/3

0.8038 0.30.021Re Pr 1 r
w w

ch

d
Nu

L

  
    
   

,  3500 Re 11000w      (38) 

0.7 1/30.073Re Pra a aNu  ,   60 Re 350a         (39) 

 

where the symbol dr stands for the hydraulic diameter of the oval tube. 

 

a) 

 

b) 

 

c) 

 

Fig. 5. Time variations of measured data (a), computed outlet water and air temperatures (b) and fin temperature at 

selective nodes (c); 
twT  - water inlet temperature, 

taT  - air inlet temperature, 
twT  - water outlet temperature, 

taT  - air 

outlet temperature, 
wV  - water mass flow rate, w0 - air velocity before the heat exchanger, Tb – fin base temperature, 

curve numbers in Fig. 5c correspond to node numbers in Fig. 3a. 
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The water-side Reynolds number Re /w w r ww d   is based on the hydraulic diameter 4 /r w wd A U , 

where Aw denotes inside cross section area of the oval tube. The hydraulic diameter for the investigated 

radiator is: dr = 7.0610
-3

 m. The air-side Reynolds number is defined as 
maxRe /a h aw d  , where wmax is 

mean axial velocity of air in the minimum free flow area, and dh = 1.4210
-3

 m is the air-side hydraulic 

diameter. The physical properties of air and water were approximated using simple functions. The effect 

of temperature-dependent properties is accounted for by evaluating all the properties at the mean 

temperature of air and water, respectively. Then, the transient response of the heat exchanger was 

analyzed. Using the measured values of the inlet water temperature, 
wT  , the inlet air temperature, 

amT  , air 

velocity in front of the radiator, w0, and the water volumetric flow rate 
wV  , the water, tube wall and air 

temperatures are determined using the present explicit finite difference method. During the experiment 

the air inlet velocity was suddenly decreased (Fig. 5a). The calculation results and their comparison with 

experimental data are shown in Fig. 5b. The agreement between the calculated and measured water and 

air temperatures at the outlet of the heat exchanger is very good. In the case of water temperature 

measurement, the time constant of the thermocouple is very small, since the heat transfer coefficient in 

the thermocouple surface is very high, and the temperature indicated by the thermocouple and the real 

water temperature are very close.           

     

5. Conclusions 
The numerical model of a cross-flow tube heat exchanger, which enables heat transfer simulation 

under transient conditions was developed. First, the transient temperature distributions of fluids, tube 

walls and fins in the one row tubular cross flow heat exchanger were determined using the finite 

difference method. Transient heat transfer through rectangular fins attached to the oval tubes was 

modeled using the Finite Volume Method – Finite Element Method. Then, the numerical model of the 

two row heat exchanger with two passes was presented. The numerical model was validated by 

comparison of outlet water and air temperatures obtained from the numerical simulation with the 

experimental data. The discrepancy between numerical and experimental results is very small.  
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