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Abstract - With the availability of waste heat from various power stations and industrial processes, adsorption 

cooling systems offer advantages compared to mechanical vapour compression systems. The dynamic modelling of 

such system is very important as it predicts the system performance with time in terms of bed temperature, pressure, 

cooling capacity and coefficient of performance. Therefore there is a need for a robust simulation platform that can 

be used to predict the system dynamic performance under various operating conditions and accommodate design 

changes efficiently. This work exploits Simulink software capabilities to develop such simulation platform and 

investigate the effects of using different adsorbent materials and cycle times on cooling capacity and coefficient of 

performance. Results showed that such platform is very effective in comparative studies. Results showed that 

water/silica gel produce more cooling capacity compared to ethanol/activated carbon adsorbents at short cycle time, 

while Maxsorb has better performance at longer cycle time as its cooling capacity increases with adsorption time. 
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Nomenclature  

A        Area [m2] 

C        Specific heat [kJ/kg]  

Dso     Surface diffusion constant [m
2
 s

-1
] 

Ea      Activation Energy [J mol
-1

] 

Hads    Heat of adsorption [kJkg
-1

] 

Fp      Particle shape factor 

M          Mass [kg] 

m
.
         Mass flow rate [kg/s] 

R          Universal gas constant = 8.314 [J mol
-1

 K
-1

]  

Rp         Particle radius [m]  

T          temperature [K] 

U         Overall heat transfer coefficient [Wm
-2

K
-1

] 

xeq        Equilibrium uptake [kg/kgads] 

x          Instantaneous uptake [kg/kgads] 

Subscript  

al Aluminium 

ads Adsorbent, adsorber 

chill Chilled 

cu Copper 

cond  Condenser 

evap Evaporator 

 

des Desorber   

in Inlet 

l Liquid 

out  Outlet 

ref Refrigerant  

w water 

v Vapour 
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1. Introduction 
In the past decades significant amount of research and development work has been carried out to 

develop compact and efficient adsorption cooling systems. The objectives of this effort could be realized 

by using properly design heat exchangers (Shi et al., 2013), cycle operating strategies (mass recovery, 

heat recovery, cascading,… etc) (Hassan and Mohamad, 2012) and developing adsorbent materials with 

high cyclic uptake (Rezk et al., 2013). The selection of adsorbent material is a key factor in the design and 

manufacturing of the adsorber bed. To compare the difference between different materials, researchers 

utilized equilibrium cycle analysis (Daou et al., 2008) which may lead to large deviation in estimating the 

cyclic uptake (Daou et al, 2008; Wang and Wang, 2005). In general, the cycle transient modelling is more 

suitable for assessing the cooling system operation performance, while equilibrium analysis is more 

suitable for energy storage applications where the cycle operation time is too long.  

Figure 1 shows a schematic diagram of two bed adsorption cooling system with four modes of 

operation: preheating, desorption, precooling and adsorption. The optimization of the transient response 

of such system is a challenging and time extensive process, since it involves the effect of many 

parameters like bed design, selection of adsorbent pairs and system configuration. Also each of these 

main parameters will have a number of sub-variables that have major effects on its performance, such as 

fins pitch, thick and height in the bed design section. Simulink is a powerful platform for transient system 

analysis, in this study a system of ordinary differential equations for calculating evaporation, 

condensation, adsorber bed temperatures and outlet water temperatures of adsorber beds and evaporator 

mass and uptake. Such tool is useful to test wide range of adsorbent material under real cooling system 

operating conditions.   

 

 
Fig.1. Schematic of Two bed adsorption chiller. 

 

2. Simulink Modeling for Adsorption Chiller 
The dynamic response of the adsorption cooling system is governed by a set of ordinary differential 

equations. Various simulation tools have been reported in literature to simulate the dynamic response of 

adsorption cooling. Such simulation tools include Modelica (Schicktanz, 2008; Bau et al., 2014), Java 

language (Pandele, 2008), Fortran Developer Studio software (Saha et al., 2007), Insel (Gaith and 

Abusitta, 2014), Matlab programing (Mitra, 2014), Trnsys (Taylan , 2010). Generally, these simulation 

tools requires the users to develop user defined functions and additional subroutines for the analysis of 

thermal systems. Simulink is a dynamic solver that uses mathematical and signal blocks with minimum 

need for additional user coding (Zhang et al., 2011 ; Sadeghlua et al., 2014). Therefore it is more robust to 

use for the analysis and comparative studies of adsorption cooling systems.   
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Figure 2 shows a schematic diagram of the Simulink model for the adsorption cooling system 

consisting of five main subsystems describing the governing equations for the adsorber beds, condenser, 

evaporator and the overall mass balance of the system.  Also, the diagram shows the switching sequences 

governing the interaction between the various blocks.  

Equations 1 to 8 describes the linear driving force model for adsorption / desorption in the beds, 

evaporator mass balance, evaporator heat balance, condenser heat balance and adsorber beds heat balance.   

The adsorption/desorption rate has been calculated using the linear driving force theory as: 

 

 

        (1)  

 

 

The overall mass balance recirculated in the chiller: 

                         (2) 

 

The adsorption/desorption temperature was predicted using the energy balance as:  

   (3) 

 

The outlet heat source/ cooling medium are calculated from the logarithmic mean temperature: 

                                     (4) 

 

Fig.2. Arrangement of chiller component in Simulink simulation environment. 

 

The evaporation temperature was calculated as (Akahira et al., 2004): 

 

     (5) 
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The chilled water outlet temperature was calculated as:  

 

 

      (6) 

The condenser energy balance (Akahira et al., 2004): 

 

      (7) 

 

 

 

The cooling water outlet temperature was calculated as:  

      (8) 

 

 

 

The cooling capacity and COP were calculated as:   
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In Simulink integral block are used to solve differential parameters as shown in figure 3a. Example of 

using this integral block for solving equation 1 is shown in figure 3b.  

 
Fig. 3a. Integration Block in Simulink. 

 
Fig. 3b arrangement of overall mass balance in equation 1 in Simulink environment. 

 

3. Model Validation and Results 
The silica gel / water adsorption cooling system described by Saha et al (1995) was modelled using 

Simulink using the standard cycle condition summarized in Table 1. Figure 4 shows the Simulink results 

compared to the data of Saha et al. It shows the temperature variation during adsorption and desorption 
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process for the beds and the chilled water outlet temperature with time. This temperature distribution 

produced less than 3% deviation in the cooling capacity of the adsorption system.  
 

Table 1. Cycle standard rating condition [Dimensions of the unit given in Saha et al.(1995)]. 

 

Physical parameter Value Units 

Chilled water supply 14 C 

Hot regeneration water 85  C 

Cooling water 31  C 

Chilled water flow rate 0.7  Kg/s 

Hot water flow rate 1.3 Kg/s 

Condenser cooling water flow rate 1.3 Kg/s 

Adsorber cooling water flow rate  1.6 Kg/s 

Half cycle time  420  Sec 

Switching time 30  Sec 

 

 
Fig. 4. Validation of water/silica gel chiller 

 

3. 1. Investigation of New Adsorbent Materials 
 Ethanol/activated carbon is a promising adsorption pair for cooling applications. Ethanol is an 

environmentally benign, non-toxic refrigerant suitable for both air conditioning and refrigeration cooling 

systems. Activated carbons have good adsorption affinity to alcohols such as ethanol. Maxsorb and ATO 

are activated carbon materials with large surface area of 3000 and 1300 m
2
/g respectively. In this section, 

Simulink modelling platform will be used to predict the performance of Maxsorb and ATO/ethanol 

adsorption system and carry out parametric study.  

The surface area and pore volumes shown in table 2 were measured using Belsorp-mini (BEL, Japan Inc) 

Nitrogen adsorption/desorption at T=77K. Specific surface areas of samples were calculated according to 

Brunauer-Emmett-Teller (BET) model. Micropore (MP) methods were used to calculate the pore size 

distribution of the activated carbon samples. Before the analysis, samples of about 50-100 mg were 

degassed at vacuum (about 5μm Hg) and at T=353 K for 2 hours.   

 
Table 2. Characteristics of Adsorption samples. 

 

Sample 
Particle diameter 

[µm] 

Surface area 

[m
2
/g] 

Pore volume 

cm
3
/kg 

Average Pore diameter 

[nm] 

Silica gel RD 340 740 448 24.27 

Maxsorb 65.6 2744 1500 1 

ATO 365.1 1337 730 0.7 
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The adosption isotherms for Maxsorb and ATO were developed using dynamic vapour sorption 

test facility (DVS). Table 3 summarizes the isotherms and kinetics models utilized for the selected 

pairs. All these equations were embedded in Simulink modelling. Figure 5 compares the temperature 

variation for one adsober bed using Maxsorb and ATO to that of silica gel/ water. Figure 6 shows the 

Coefficient of performance (COP) for the adsorption pairs shown for different adsorbent pairs. It is 

depicted that increasing the cycle time improves the COP of the cooling system. Additionally 

Maxsorb COP changes significantly relative to other adsorbent with the cycle time. The effect of 

cycle time on the cooling capacity is summarized in Table 4. 
 

Table 3. Isotherm and kinetics of different samples. 

 

  

Table 4. Different pairs at the standard operating condition with different half cycle time. 

 

Physical parameter 
Cooling capacity[kW] 

450 sec 1030 sec 

Maxsorb/ethanol 7.56 8.08 

Water/silica gel 10.9 7.98 

ATO/ethanol 3.39 2.91 
 

The effect of evaporation temperature and condensation temperature is critical on the 

performance of adsorption cooling system. The evaporation temperatures are varied based on the 

supply chilled water temperature and flow rates. Similarly the case of condensation temperature 

depends on the temperature of cooling water temperature and flow rate. Figures 7a  and 7b present 

the effect of supplied chilled water temperature on the cooling capacity and COP, while figure 8a and 

8b present the effect of the cooling water temperature. 

 

Water/ silica gel  

 

Isotherm  

 

 

Kinetics                        

 

Ethanol/ Maxsorb  

 

Isotherm  

 

Kinetics 

Ethanol/ ATO 

 

Isotherm  

 

Kinetics 
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Fig. 5. Temperature variation with different adsorbent 

pairs 

Fig. 6. COP of different pair at half cycle time of 1030 

sec at standard condition 

(a) Cooling capacity                     (b) Cooling COP 

Fig. 7. Effect of chilled water temperature on the chiller cooling capacity and COP. 

 

 
 

(a) Cooling capacity                     (b) Cooling COP 

Fig. 8. Effect of cooling water temperature on the chiller cooling capacity and COP. 

 
5. Conclusion 

The dynamic modelling of adsorption cooling systems is very important as it predicts the system 

performance with time in terms of bed temperature, pressure, cooling capacity and coefficient of 

performance. Simulink is a powerful dynamic modelling technique that has advantages compared 

simulation tools in terms of its simplicity and ease of use. 

Simulink capabilities were used in the modelling of adsorption cooling system with three different 

adsorption pairs at different cycle times and operating temperatures. Results showed that silica gel has 

higher capacity at small adsorption time (450 sec) while Maxsorb/ethanol outperforms other materials at 

large cycle time of 1530 seconds. The present analysis confirms the potential of Simulink for evaluating 

complex thermal systems such as adsorption cooling systems.  
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