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Abstract – Taylor-Couette flows in the annular region between rotating concentric cylinders are studied 

numerically to determine the combined effects of the co - and counter-rotation of the outer cylinder and the radius 

ratio on the system response. The computational procedure is based on a finite volume method using staggered 

grids. The axisymmetric conservative governing equations are solved using the SIMPLER algorithm. One considers 

the flow confined in a finite cavity with radius ratios  = 0.25, 0.5, 0.8 and 0.97. One has determined the critical 

points and properties for the bifurcation to the Taylor Vortex Flow (TVF) state that bifurcate from the basic circular 

Couette flow (CCF). Indeed, the results are presented in terms of the critical Reynolds number Rei of the inner 

cylinder that depends on Reo and . To show the capability of the present code, excellent quantitative agreement has 

been obtained between the calculations and previous experimental measurements for a wide range of radius ratios 

and rotation rates. 
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1. Introduction 
In recent years, the Taylor vortex flow pattern has been applied intensively to enhance thermal 

exchange in food processing industry or mixing in bio-industry and medical field such as catalytic 

chemical reactors, dynamic filtration devices and cell culture bioreactors. This flow is induced by the 

force balance between the centrifugal force and the pressure gradient in the radial direction within the gap 

of two concentric rotating cylinders. If the outer cylinder is held stationary and the inner one rotates at 

low angular velocities, the flow is steady and purely azimuthal (circular Couette flow CCF). Taylor 

(1923) showed that when the angular velocity of the inner cylinder is increased above a certain threshold, 

CCF becomes unstable and is replaced by a series of axisymmetric counter-rotating toroidal vortices 
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known as Taylor Vortex Flow (TVF). A further increase in the rotation rate of the inner cylinder gives 

rise to series of fluid transitions with following flow modes, Wavy Vortex Flow (WVF), Modulated 

Wavy Vortex Flow (MWVF) and ending with turbulence.  

In most of the cases, rotation is not limited to the inner cylinder. In fact, many investigations have 

been carried out where both cylinders rotate. Andereck et al. (1986) have well examined this problem in 

the small gap size and shown experimentally that the simplest flow CCF can bifurcate out to the three 

flow modes, Taylor vortex flow (TVF), spiral vortices (SPI) and interpenetrating spirals (IPS) in the case 

of counter-rotating cylinders. On the other side, when the cylinders rotates in the same direction the more 

complex flow patterns appear only for high values of angular velocities. The wide gap case was addressed 
in detail experimentally by Schulz et al. (2000, 2003) and numerically by Hoffmann et al. (2000, 2005). 

For a radius ratio η = 0.5, they have determined the spatio-temporal properties and the bifurcation 

behaviour of TVF and of SPI states that bifurcate out of CCF. Recently, Khali et al. (2013) have studied 

this problem in the case of non Newtonian fluids using the Lattice Boltzmann Method (LBM).  

The present paper deals with the numerical examination of the structure and the dynamic properties 

of the Taylor vortex flow (TVF) that bifurcates out of the unstructured base state of circular Couette flow 

(CCF). The gap width effects on this transition are also discussed. 

 

2. Physical Problem and Geometry 
One considers the flow confined between two concentric cylinders of radii Ri and Ro respectively and 

height h. The working fluid is assumed to be incompressible, isothermal and Newtonian of mass density  

and kinematic viscosity. Both cylinders can rotate independently around their common axis Z at the 

angular velocities i and o, respectively, while the top and bottom end-walls are stationary. 

The system is characterized by two geometric parameters: the radius ratio =Ri/Ro and aspect ratio 

=h/d, where d=Ro-Ri is the gap width. Four values of  have been here investigated: η = 0.25 and 0.5 

(large gap) and η = 0.8 and 0.97 (small gap). In order to minimize the influence of the Ekman vortices, a 

large aspect ratio of =20 was chosen. Thus, the flow physical parameters can be expressed in terms of 

the inner and outer Reynolds numbers, Rei=Ωi Ri d/ ν and Reo=Ωo Ro d/ ν respectively. 

 

3. Numerical Method 
The fluid flow is described by the Navier-stokes and continuity equations for the velocity field, 

written in cylindrical coordinate system (r,,z). The variables are dimensionless using the scales h, hi, 

i
-1 

and  (hi)
2 

for length, velocities, time and pressure respectively. No-slip boundary conditions are 

applied on the inner and outer cylinders. 

To solve this problem numerically, one uses an in-house axisymmetric code based on the finite 

volume method using staggered grids in a (r-z) plane fully described by Elena (1994). The numerical 

procedure is based on the SIMPLER algorithm to solve the velocity-pressure coupling. A (40200) mesh 

in the (r,z) frame has proved to be sufficient to get grid independent solutions for both configurations 

(Reo=0 and Reo 0). For this grid, the size of the thinner mesh is 1r = 6.2 10
-4

h and 1z = 1.8510
-3

h in 

the radial and axial directions respectively. It will be used for all cases considered in the following. About 

3.10
4
 iterations are necessary to obtain the numerical convergence of the calculations.  

 

4. Results 
The first state to be computed was that of circular Couette flow (CCF) in which the velocity field is 

given by the well known exact solution 
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Appropriate tests to validate our code are comparing the numerical results against the analytical 

solutions (Eq.1). In this sense, Figure 1a shows the tangential velocity profile along the radius for Rei=50, 

Reo=0 and  = 0.5. An excellent agreement has been obtained between the calculated solution and the 

analytical one. In the case of stationary outer cylinder and for the radius ratios considered here, the critical 

Reynolds number, Reic, for the onset of Taylor vortices is compared with values given by the linear 

stability of Gebhardt and Grossmann (1993) on Figure 1b. One can note that these values agree well with 

our computational data. 

 

 
Fig. 1. (a) Comparison of the azimuthal velocity with analytical solution for z = 0,1h, Reo=0 and  =0,5; (b) Linear 

stability theory for the transition boundary CCF and TVF (Reo=0). The solid line represents the values given by the 

linear stability analysis of Gebhardt and Grossmann (1993) and the symbols represent the present calculations. 

 

The transition from circular Couette flow (CCF) to Taylor vortex flow (TVF) is located by fixing Reo 

and slowly increasing Rei. In Figure 2a, one examines the effect of the outer cylinder rotation in a Taylor-

Couette apparatus of large ( =0.25 and 0.5) and small ( =0.8 and 0.97) radius ratios. The base flow is 

unstable to time-independent axisymmetric Taylor vortex flow. Indeed, for a given radius ratio, one can 

see that the rotation of the outer cylinder in opposite direction is at first weakly destabilizing, and 

becomes then stabilizing. As an example, for a radius ratio = 0.5, the minimal value of the transition 

point is for an outer cylinder Reynolds number Reo = −15 and Rei = 66.3, which is close to the point 

found by Schulz et al. (2000) (Reomin =-15.26, Rei =66.05). Beyond this value, the inner Reynolds number 

Rei increases monotonically as Reo increases. However, the co-rotation stabilizes the symmetric flow and 

the vortices appear for relatively high values of angular velocities of the inner cylinder and the delay of 

the transition is more marked. It can be seen that the rotation of the outer cylinder has the same qualitative 

effect as the imposed axial through flow. In fact, an axial flow stabilizes the circular Couette flow and 

delays the transition to TVF (Lueptow, 2000). 

 
Fig. 2. (a) Stability diagram for the primary instability: Rei versus Reo for different values of η; (b) Comparison of 

the critical inner Reynolds number for  =0.5 with different works. 

http://link.springer.com/search?facet-author=%22Richard+M.+Lueptow%22
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One can also see that the transition behaviour is found to depend strongly on the gap size. Indeed, for 

wide gap  <0.5, increasing the radius ratio has a destabilizing effect on the Couette flow. Beyond this 

value, as the annular gap decreases, the critical inner Reynolds number increases and the flow gets stable. 

Thus, It is preferable that the bifurcation threshold be examined by the Taylor number under the form Ta 

 Rei 
0.5

, where =Ri/d is the clearance characterizing the gap size. This non-dimensional number 

appeared in the pioneering analytical studies of the small gap approximation   0.  

To check the accuracy of our results (Fig.2b), the critical inner Reynolds number is compared with 

published results, the measurements of Schulz et al. (2000) and the analytical data of Hoffmann et al. 

(2005) for a similar radius ratio of =0.5 . One can observe a good agreement concerning the onset of the 

first instability for outer Reynolds numbers – 77.5 Reo  0. In this plane, the Rayleigh criterion 

corresponds to the straight-line (Rei =2Reo) asymptote of the stability threshold of Couette flow at large 

and positive Reo values. 

 
 

 

    Rei= 50 

 

 

    Rei= 72 

 

 

Fig. 3. Streamlines for ReO = 0 (=20, =0.5) 

 
     

   Rei= 90 

 

   Rei= 100  

 

 

   Rei= 120 

 

 
Fig. 4. Streamlines for ReO = +40 (=20, =0.5) 

 
 

   Rei= 68,4 

 

    

   Rei = 75 

 

   Rei= 85 

    

 

 

Fig. 5. Streamlines for Reo= - 40 ( = 20, =0.5 ) 

 

One has examined also the effects of the outer cylinder rotation rate on the development of the 

vortices within the gap. Figure 3 shows the numerical results contours of streamlines at Reo= 0. The lower 

horizontal wall indicates the inner cylinder and the upper one the outer wall. It shows that there are two 

vortices in the upper and lower parts. These vortices known as Ekman vortices are due to the endwall 
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effects. The meridional flow is due to the existence of the top and bottom stationary walls. In the vicinity 

of these walls, the centrifugal force is weaker than that in the middle part and therefore the opposing 

pressure gradient is dominant and two vortices are generated. By increasing the rotating speed, the Taylor 

vortices fill the whole gap between the cylinders. 20 vortices appear instead of two. This is due to the 

transition to an unstable state. In the case where the cylinders rotate in the same direction (Fig.4), the 18 

vortices appear instead of 20 and the size of the Ekman vortices increases. This phenomenon can be 

explained by the great endwall influence. However, when the cylinders rotate in opposite directions 

(Fig.5), the number of vortices increases from 20 to 22. Also, the Ekman vortices size decreases. Similar 

observation has also been made by Khali et al. (2013). One can note that increasing the corotation has a 

more stabilizing effect compared to the counter rotation case. 
 

4. Conclusion 
The effects of the radius ratio and the inner Reynolds number on the transition between the circular 

Couette flow regime (CCF) and the axisymmetric Taylor vortex flow (TVF) has been investigated 

numerically. An excellent quantitative agreement has been obtained between finite-volume calculations 

with previous experimental and analytical studies for a wide range of radius ratios and rotation rates. 

It has been found that the size of the annular gap plays an important role on the stability threshold of 

Couette flow. In the wide gap, as the radius ratio η  0.5 is decreased, the critical inner Reynolds number 

increases contrary to the small gap case (η  0.5), for which the critical inner Reynolds number is 

increased as the radius ratio is increased. 

In addition, one can note that for a given radius ratio, the rotation of the outer cylinder in co- or 

counter direction delays the transition from the CCF to the TVF regimes. The flow in the co-rotating case 

is more stable than in the counter-rotating case. In the co-rotating case, the number of vortices is 

decreased from N to N-2. On the other hand, the number of vortices increases from N to N+2 in the case 

where the cylinders rotate in opposite directions.  
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