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Abstract - Miscible non-reactive flow displacements in homogeneous porous media and involving time-dependent 

sinusoidal injection velocities are modeled. The displacements are examined through full non-linear simulations 

using the highly accurate Hartley based pseudo-spectral methods. It is found that for the same net injection flow 

rate, time-dependent sinusoidal flows can actually be more or less unstable than their constant injection velocity 

counterpart.  The effects of three parameters that characterize the sinusoidal profile, namely the amplitude (), the 

frequency () and the phase () were analyzed. It was found that all these parameters affect the flow and result in 

important changes in the flow structures as well as the breakthrough time, when compared with the constant 

injection displacement velocity. It was however also found that only the amplitude seems to result in changes in the 

number of fingers while both the frequency and phase do not affect the number of fingers.  These changes in the 

flow dynamics can be used to control the degree of mixing between the two fluids and to optimize a variety of flow 

displacements in porous media. 
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1. Introduction 
Flow instabilities are often observed in processes of displacements of fluids in porous media. Such 

instabilities develop in the form of complex finger-shaped intrusions at the interface between the two 

fluids that propagate in both upstream and downstream directions of the flow (Saffman and Taylor, 1958). 

The instability can be triggered by either viscosity mismatch and is referred to as viscous fingering or 

density mismatch, where it is known as the Rayleigh-Taylor instability. These fingering phenomena occur 

in enhanced oil recovery, fixed bed regeneration, groundwater flows, CO2 sequestration, and soil 

remediation and filtration, etc. (Hejazi and Azaiez, 2010, 2013). In most cases, viscous fingering is 

undesirable since it reduces the sweep efficiency, while in others it can be desirable as it promotes 

mixing. A considerable amount of literature has been published on viscous fingering since it was first 

examined by Hill (1952). Extensive literature reviews on this instability have been discussed by Homsy 

(1987) and McCloud and Maher (1995). 

To date, most of the existing studies dealing with this type of instability have been limited to flows 

where the injection velocity is constant. However, in a number of practical applications the displacement 

velocity is time dependent and hence can result in different flow developments. Examples of such 

applications are found in trickle-bed reactors (Yaqing et al. 2012) where different time-dependent liquid 

feed strategies have been adopted to increase the mass transfer rate of the limiting reactant as well as to 

prevent flow mal-distribution and hot spot formation (Boelhouwer, 2002). Other important applications 

include a number of enhanced oil recovery (EOR) processes such as the cyclic steam stimulation (CSS) 

that involves three stages of injection, soaking and production (Mago et al., 2005) as well as the CO2 

huff-and-puff technique that involves cyclic injection of liquid CO2 for heavy as well as light oil 

enhanced recovery (Monger et al., 1991). The efficiency of these processes which can be run as either 

miscible or immiscible depends on the importance and duration of each stage of the cycle. 
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A very successful application of time-dependent flow rates EOR was investigated by Davidson et al. 

(1999) and Spanos et al. (2003) who conducted laboratory experiments with a Consistent Pulsing Source 

(CPS) to generate pulsing water injection to immiscibly displace the oil in sand pack. It was found that 

time-dependent flow rates can indeed suppress the fingering instability and improve the sweep efficiency 

in comparison with constant flow rates. Time-dependent flow displacements were also considered in the 

field of solute transport in groundwater systems. In particular (Singh et al., 2009) examined the effects of 

seasonal groundwater velocity and water level on contaminant concentration in water and proposed 

analytical solutions of the one-dimensional concentration transport equation for sinusoidal and 

exponential velocities. However these authors did not account for the coupled full momentum and mass 

transport equations and hence the flow instability was not addressed. Recently, Dias et al., (2010a; 2010b; 

2012) investigated the possibility of attenuating the fingering instability for immiscible flows in a radial 

geometry using time-dependent flow rates. They reported the optimal flow rates for linear flow regime 

and nonlinear flow regime. More recently Yuan and Azaiez (2014) examined the effects of step-size 

dependent flows on the efficiency and stability of reactive displacements in porous media. The authors 

showed that it is possible to control the amount of chemical product through a judicious choice of the 

nature and cycle of the time-dependent displacement. 

The present study deals with miscible non-reactive displacements in rectilinear Hele-Shaw cells 

under sinusoidal flow velocities. The objective of the study is to determine the effects of the frequency, 

amplitude and phase of the velocity on the hydrodynamic instability and to characterize these effects both 

qualitatively through concentration contours and quantitatively through the sweep efficiency. The 

objective is to propose guidelines for the choice of the frequency, amplitude and phase that allow one to 

control the flow towards either enhancing or attenuating the instability. 

 

2. Mathematical Model and Numerical Procedure 
A two-dimensional displacement in which both fluids are incompressible, non-reactive and fully 

miscible is considered. The flow takes place in the horizontal direction in a homogeneous medium of 

constant porosity  and permeability K. A schematic of the two-dimensional porous medium is shown in 

Fig. 1. The length and width of the medium are L and H respectively. The medium is assumed to be 

initially filled with fluid1 of viscosity 1. A miscible fluid2 of viscosity 2 is injected from the left-hand 

side with a velocity u(t) to displace fluid1. The direction of the flow is along the x-axis and the y-axis is 

parallel to the initial plane of the interface.  

 

 
Fig.1. Schematic of the flow. 

 

The model equations are the continuity equation, momentum (Darcy’s law) and the transport of the 

fluids:  
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In the above equations, v is the two-dimensional Darcy velocity; p the pressure; C the concentration 

of the displacing fluid; and D is the constant diffusion coefficient. The above equations are made 

dimensionless as in Islam and Azaiez (2005) and Yuan and Azaiez 2014, and are expressed in a 

Lagrangian reference frame moving with the dimensionless displacement velocity uf(t). The resulting 

dimensionless equations (using the same notation) are: 

 

0.  v                              (4)

i)v (t)u f μ(p                            (5)
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Two additional dimensionless groups are also involved, namely the Péclet number DULPe  and 

the cell aspect-ratio HLA  that appear in the boundary conditions [Hejazi and Azaiez 2013,]. Following 

previous studies, an exponential concentration dependent viscosity model is adopted to complete the 

model [Tan and Homsy 1988, Sajjadi and Azaiez (2013)],  
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where R is the log-mobility ratios between the two species. Note that the flow will be unstable for 

R>0 under an injection process (positive velocity) and stable otherwise. The equations are expressed 

using a stream-function vorticity formulation, where the velocity field, the stream-function  and 

the vorticity w [Hejazi and Azaiez 2013, Yuan and Azaiez 2014].  With this formulation, the 

continuity equation is satisfied automatically and the governing equations take the forms: 
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w 2  (15) 

 

The partial differential and algebraic equations are solved using a highly accurate pseudo-spectral 

method based on the Hartley transform [Canuto et al. 1987, Bracewell 2000, Hejazi and Azaiez 2013, 

Yuan and Azaiez 2014]. This method allows to recast the partial differential equation in time and space 

into an ordinary differential equation in time. The solution for the time stepping of the diffusive-

convective equation was obtained by using a semi-implicit predictor-corrector method along with an 

operator-splitting algorithm [Islam and Azaiez 2005]. 

The code was validated by comparing the concentration contours for constant velocity under the 

same parameters with the studies by Tan and Homsy (1988) and Islam and Azaiez (2005). Furthermore, 

the convergence of the numerical solution was examined by considering cases with different spatial 

resolutions varying from 128x128 to 512x512 while varying the time step accordingly. Since a resolution 

of 256x256 resulted in finger structures similar to those obtained with larger number of grid points, it was 

adopted in all subsequent simulations. The results will be presented as time sequences of iso-fields of the 

concentration as well quantitative properties. Note that the time sequences are not always presented at the 

same time intervals, and only the frames that help in analyzing the effects of the velocity are shown. 
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In what follows the flow dynamics will be analyzed in the case of are solved numerically in the case 

of a sinusoidal model where the displacing velocity is set as: 
 

)t2sin(.1)t(uf     (16) 

 

 In the above equation  is the amplitude,  the phase while  is the frequency. It should be stressed 

that the average velocity over a period is one (     ̅̅ ̅̅ ̅̅ ̅   ), and the discussion will compare the flow 

developments with a constant injection velocity also equal to one. This implies that the net injected flow 

in both the time-dependent and constant velocity displacements is the same. Also note that for <1 the 

velocity is strictly positive at all times while for >1 it can be negative.  

 

3. Results 
In this section results are presented for the sinusoidal injection velocity profiles. Unless mentioned 

otherwise, the following parameters are fixed as: R=3, A=2 and Pe=500. For brevity and illustration 

purposes, the time sequences will not be always presented necessarily at the same time intervals, and only 

the frames that reveal new and interesting finger structures that help in the discussion, are shown. In all 

contours, the red and blue colour fields correspond to the displacing and displaced fluid, respectively. In 

what follows a comparison between the constant injection and time-dependent velocity flows is presented 

followed by an analysis of the effects of the magnitude (), the frequency () and the phase () of the 

time-dependent velocity. The results will consist of an analysis of the finger structures as well as of the 

breakthrough time where the displacing (red) fluid reaches the right-hand side boundary of the domain.  

 

3. 1. Comparison with Constant Injection Flows 
 

 
 

 
(a)      (c) 

Fig. 2. Concentration profiles at t=300 and t=500 for (a) constant injection model and (b) cyclic injection model (Γ = 

0.5, ω =0.005, =0). 

 

 Figure 2 depicts contours of the concentration for the case of a constant injection velocity (=0) 

and a sinusoidal velocity (=0.5, =0.005, =0). The period of the sinusoidal model is in this case T=200 

and the maximum and minimum velocities are 1.5 and 0.5, respectively. It is obvious that the cyclic 

injection model is more unstable than that of the constant injection model and that the instability 

develops earlier in the former case. As a consequence, the displacing fluid is able to breakthrough earlier 

in the time-dependent displacement case. It should be however noted that the number of fingers has not 

been affected by the switch to the sinusoidal flow and that the main mechanisms for flow development 

and interactions are very similar in both flow scenarios. In what follows the effects of the amplitude () 

and the frequency () will be analyzed.  
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3. 2. Effects of the Amplitude () 
 

 
(a)      (b) 

 
(c)      (d) 

Fig. 3. Concentration profiles of cyclic model with ω =0.005, =0 at t = 300: (a) =0.5, (b) =1.0, (c) =1.5, (d) 

=2.0. 

 

In this section the effects of the amplitude are analyzed. As noted earlier, if  is larger than one, the 

displacement may switch to an extraction (negative velocity) regime. During such reversal regime it is 

expected that the flow instability will be attenuated.  Concentration contours are depicted at a time t=300 

for four values of It is clear that the magnitude of the sinusoidal component of the velocity has a strong 

effects on the instability and the flow development. In particular the number of fingers changes with , 

and so do the overall finger structures. In particular there is a clear tendency for the fingers to become 

more complex and to exhibit stronger interactions as the amplitude is increased. This in turn results in 

shorter breakthrough time for larger amplitudes. It is finally worth noting that even in the cases where the 

flow reverses to extraction (uf(t)<0), the front between the two fluids is still sharp with strong 

concentration gradients. 

 

3. 2. Effects of the Frequency () 
 

 
(a)      (b) 

 
(c)      (d) 

Fig. 4. Concentration profiles of cyclic model with =1.0, =0 at t=200: (a) ω=0., (b) ω=0.002, (c) ω=0.005, (d) 

ω=0.01 

 

The effects of the frequency are illustrated in Fig.4 at t=200 and for =1 and =0. Here too one sees 

that the flow dynamics are affected by the frequency even though the effects do not seem to be 
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monotonic. As  is increased from 2.10
-3

 to 5.10
-3

, the instability is attenuated and the fingers become 

more diffuse. Further increase to reverses 10
-2

 the effects and leads to sharp well developed fingers. Still 

the front is most unstable in the case of the smallest frequency examined. It should be mentioned that the 

frequency did not affect the number of fingers that develop in the flow. 

 

3. 3. Effects of the Phase () 
 

 
 

 
 

 
(a)                                 (b)                                   (c)                                    (d) 

Fig. 5. Concentration profiles of cyclic model with =2.0, ω=0.01 at t=100, 300 and 400: (a) Constant velocity, (b) 

=0, (c) =/2, (d) =. 

 

The role of the phase  in the flow is shown in Fig. 5 in the case of a sinusoidal velocity with =2 

and =10
-2

 corresponding to a period T=100. Results of the constant velocity are also shown for 

comparison. Note that for =2, the flow will go through stages of injection and extraction and the 

variation of the phase will control in which of these stages the flow is initiated. Clearly the phase affects 

the flow and can lead to different finger structures as well as breakthrough times. However similar to 

what was observed in the case of the frequency, the phase has no effects on the number of fingers. 

Interestingly, displacement with  and hence starting with an extraction followed by an injection result 

in flow structures that are similar to those of the constant injection velocity. The other two intermediate 

values of the phase lead to more unstable flows and faster breakthrough times. 

 

4. Conclusion 
The effects of a time-dependent sinusoidal displacement velocity on the development of the 

fingering instability in homogeneous porous media were examined. The dynamics of the flow were 

analyzed and compared with those arising from a constant injection velocity that results in the same 

average flow rate. It is found that the time-dependent velocity affects the hydrodynamic instability and in 

particular can lead to important changes in the number of fingers, the flow structures as well as the flow 

breakthrough time.  The effects of three parameters, namely the velocity amplitude, frequency and phase 

were analyzed. All three parameters were found to have profound effects on the flow and the 

breakthrough time. However it was found that only changes in the amplitude can result in changes of the 

number of fingers while the frequency and phase do not affect the number of fingers. These results can be 

used to optimize and control the viscous fingering instability through judicious choices of the flow 

parameters while ensuring that the same amount of fluid is injected in the porous medium. 
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