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Abstract - In the present study the entropy production in laser heating of Silicon-Germanium thin films is 

examined. The film consists of three layers in two possible arrays, namely, Si-Ge-Si and Ge-Si-Ge. Silicon and  

Germanium are subjected to the laser irradiation respectively. Total width of the array is 200 nm in all cases. The 

heat transport in the array is described by the energy conservation equation with a source term representing the 

absorption of laser radiation in the medium. The boundary condition for the temperature is of Dirichlet type. The 

three layer system is modelled by considering it a heterogeneous media where the heat conductivity coefficient  

depends on position. We present the stationary temperature and entropy production profiles together with the global 

entropy production in the system as a function of total Silicon length in the array. We calculate the stationary global 

entropy production by integrating the local production in the width of the film. Our main result concerns the 

existence of maxima and minima in the global entropy production. The Ge-Si-Ge array presents a remarkable 

maximum at a total length of Silicon of 145 nm. These results may be useful in designing of thin films used in 

electronic industry where the control of irreversible processes is important. 
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1. Introduction 
The entropy production analysis is useful for the study of dissipation and irreversibility of different 

processes in physics and engineering of nanoscaled systems. The minimum entropy production principle 

states that the system evolves in time reaching a minimum entropy production rate at the stationary state. 

This establishes a relation between irreversible processes and optimal performance of the system. Thin 

films are widely used in electronic industry. Considerable research studies are being carried out to 

examine the energy transport in those systems and their optimal performance (Figueroa and Vázquez, 

2014) and durability. The effects of laser heating of dielectric thin films have attracted particular interest 

in the scientific community (Yilbas and Al-Dweik, 2013; Mansoor and Yilbas, 2011; Lewandowska and 

Malinowski, 2006). In this work we address the problem of laser heating of Si-Ge thin films under the 

scope of irreversible processes produced during the heat transport in the system. We model an array of Si-

Ge layers within the framework of thermodynamics of irreversible processes (Jou et al., 2001). In Section 

2 we give a brief description of the studied system and the used methods to model heat transport and 

entropy production. Our results can be seen in Section 3. Finally, a discussion with some concluding 

remarks can be found in Section 4. Our main result is to show the existence of minimum entropy 

production states determined by specific material distribution in the system.  
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2. Methods 
Due to the progress in the microscaling techniques the film thickness may reduce to become 

comparable to the phonon mean free path (PMFP). When the thickness is below the PMFP the heat 

transport regime becomes of the ballistic type. This may make necessary to use a radiative transport 

equation to describe energy transfer (Joshi and Majumdar, 1993). Otherwise, the transport pertains to the 

diffusive regime. Considering this, in this work the film thickness of the array is constrained to be above 

the PMFP in such a way that the classical Fourier equation represents a valid autonomous mesoscopic 

theory to describe heat transfer. We then combine Fourier equation with the internal energy conservation 

to get the transport equation where the incident laser energy is incorporated as a volumetric heat source to 

account for the absorption of energy by the medium. It is also included the effect of the layer thickness on 

the heat conductivity. The expression for it is obtained in the framework of extended irreversible 

thermodynamics. This allows us to describe the experimentally observed diminishing of the thermal 

conductivity when the layer thickness approaches the PMFP. The transport equation is solved with 

Dirichlet type boundary condition for the temperature. 

 

2. 1. The System 
The three layer system is schematically shown in Figure 1. The incidence of the Laser beam is 

always from the left as it can be seen. The thickness of the system is given by 321 LLLL  . The 

boundary condition is KLTT 300)()0(   . Equal temperatures are assumed at the interfaces. 

 

 

Fig. 1. A schematic view of a Si-Ge-Si array consisting of three layers of thickness 1L , 2L  and 3L . 

KLTT 300)()0(  . The system Ge-Si-Ge can be represented by a similar scheme as the shown in this figure.  

 
2. 2. Mathematical Model 

The governing system of equations of heat transport can then be written as follows: 
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where s  is the volumetric mass density, vC  the specific heat, )(LK  the thickness dependent heat 

conductivity, P  the source term which represents the absorption of laser radiation in the medium. In the 

stationary state Eq. (1) reads as  
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The expression for the source term depends on the position of the layer within the array. In the case that 

the layer is in the side of the incident laser it is given by 
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In this equation 0E  is the electric field amplitude of the incident laser,   the absorption coefficient of the 

medium, L  the thickness and v  and 0  the refraction index and the magnetic permeability of empty 

space, respectively.  Two optical coefficients are included in Eq. (3): 

 

2

1

1
1

2




















v

v

v

vT ,  (4) 

2

1

1
12 


















v

vR .  (5) 

 

1  is the refraction index of the medium, 1vT  is the transmission coefficient from the empty space to the 

medium and 12R  is the reflection coefficient of the following layer.  

Finally, we use two results obtained along with the irreversible thermodynamics principles, namely, the 

entropy production S  (Jou et al., 2001) and the thickness dependent heat conductivity )(LK  (Álvarez 

and Jou, 2007). The first one is written as follows: 
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where the heat flux is given by the classical Fourier equation 
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and the second one reads 

 























 141

2
)(

2

22

2

0

L

l

l

LK
LK




.           (8) 

 

In Eq. (8) 0K  is the bulk heat conductivity, l  the phonon mean free path in the medium and L  the 

thickness of the layer. 
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3. Results 
In this section our main results are displayed. They were obtained by using the following values for 

the involved parameters: KmWK Si /1480  , KmWK Ge /9.590  , nmlSi 6.7 , nmlGe 5.10 , 

01.4 GeSi  , 
17101  mSi , 

17107  mGe , CNE /1014.6 4

0  . 

In Figure 2 we present the stationary temperature profile of Si50-Ge100-Si50 (blue line) and Ge50-Si100-

Ge50 (red line) arrays when the lengths of the layers are 50 nm, 100 nm and 50 nm, respectively. In the 

notation used, the thickness of each layer is indicated by the subindex. This result was obtained by 

analytically solving Eq. (1) in the stationary state with Dirichlet type conditions KLTT 300)()0(  . 

 

 

 
Fig. 2. Stationary temperature profiles for Si50-Ge100-Si50 (blue) and Ge50-Si100-Ge50 (red).  The subindexes indicate 

the length (in nm) of the corresponding layer. 

 

 

The stationary local entropy production in the profile can be seen in Figure 3 where the blue line 

corresponds to the Si50-Ge100-Si50 array and the red one to Ge50-Si100-Ge50 . Note that the scale in the 

vertical axis is logarithmic. 

 

 
Fig. 3. Stationary entropy production profiles for Si50-Ge100-Si50 (blue) and Ge50-Si100-Ge50 (red).  The subindexes 

indicate the length (in nm) of the corresponding layer. 

 

Finally, in Figure 4 it can be seen the stationary global entropy production as a function of the total 

length of Silicon in the array. As above, the blue line corresponds to the Si50-Ge100-Si50 array and the red 

one to Ge50-Si100-Ge50. Each line was obtained by fitting a polynomial of degree 10 to the calculated 

discrete set of points. Note that the scale in the vertical axis is logarithmic. 

A discussion and concluding remarks are included in the following section. 
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Fig. 4. Global entropy production vs. Total Silicon length L1+L3 (see Figure 1) for Si50-Ge100-Si50 (blue) and L2 for  

Ge50-Si100-Ge50 (red).  The subindexes indicate the length (in nm) of the corresponding layer. 
   

              

4. Concluding Discussion 
In this final section we make a brief discussion of our results and include some concluding remarks. 

First of all, it is necessary to mention that we have not considered the thermal interface resistance. For this 

reason the stationary temperature profiles are smooth curves. It must be noted that even when the material 

distribution of the system is symmetric the stationary temperature distribution in the profile is not 

symmetric. This is more marked in the case of the Ge-Si-Ge array due to the fact that the absorption 

coefficient of Germanium is bigger than that of Silicon. It must be also noted that the minima in the local 

entropy production shown in Figure 3 correspond to the maxima of the temperature profile (see Figure 2). 

Specifically, in the case of the Si-Ge-Si array the minimum in the local entropy production may be 

situated around .109 8 mx   In Figure 2, it can be observed that in such position there exists a 

maximum in the temperature. In the same manner, the minimum in the local entropy production of the 

Ge-Si-Ge array around mx 8104   corresponds to the maximum temperature at the same position. 

Note that in those positions the heat flux vanishes. Referring now to Figure 4 it is worth mentioning that 

when the Si-Ge-Si array shows a maximum in the global entropy production, the Ge-Si-Ge array shows a 

minimum. For instance, in the interval from 40 to 60 nm  the Si-Ge-Si array produces less entropy than 

the Ge-Si-Ge array. At the contrary, in 60-125 nm the Ge-Si-Ge array produces less than the Si-Ge-Si 

array. Finally, from 125 to 155 the situation inverts again. To close this discussion we remark the 

maximum in the global entropy production of the Ge-Si-Ge array around nm145 . This maximum is 

almost one order of magnitude bigger than any other maximum in the graph. The direction of laser 

incidence defines a kind of privileged direction in terms of the entropy generated in the system when 

there is not a symmetrical distribution of the materials in the system. Only one of the two possible 

incidence directions produces a minimum of entropy. 

These results may be useful to the design of thin films used in electronic industry where the control 

of irreversible processes is an important issue.  
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