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Abstract - A method of predicting the Hazen-Williams roughness coefficient from knowledge of equivalent sand-grain roughness is 

presented. An equation resulting from combining the Hazen-Williams, Darcy-Weisbach, and Colebrook-White equations is used as the 

basis of the relationship. This equation in turn is used as the theoretical foundation for correlating existing experimental data for sand-

grain roughness and Hazen-Williams coefficient. Previously developed methods have not incorporated such data. The result is a 

correlation that shows very good agreement between accepted and predicted values, providing an improved means by which conversion 

of sand-grain roughness to Hazen-Williams coefficient can be accomplished where values for one or the other are not readily available. 
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1. Introduction 
 In finding the head loss in turbulent pipe flow, the customary approach is to make use of the Darcy-Weisbach equation 

given by  
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 where hL is the total head loss, L is pipe length, D is diameter, ρ is density, V is velocity, g is gravitational acceleration, 

and f is the Darcy friction factor. The Darcy friction factor in turn is a function of Reynolds number and relative roughness. 

That is 
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 where Re is Reynolds number and ε is the equivalent sand-grain roughness of the pipe surface. The friction factor is 

typically found by making use of the Colebrook-White equation or its graphical representation given by the Moody chart.  

 A number of empirical relationships are also common in the analysis and modelling of pipe flow, the Hazen-Williams 

equation representing perhaps the most widely used [1]. The equation is given by [2] 
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 where V is fluid velocity, C is the Hazen-Williams coefficient, Rh is the hydraulic radius, defined as the cross-sectional 

area divided by the wetted perimeter (Rh = A/P), and S is the slope of the energy grade line, or the total head loss per unit 

length of pipe (S = hL/L). The constant KHW is a dimensional constant with a value of 0.849 m0.37/s in the SI system. The 

Hazen-Williams coefficient C characterizes the roughness of the pipe, with values ranging from 140 and above for very 

smooth pipes, to 60 for badly corroded pipes [1]. Used extensively in the United States in the design of water-supply systems 

[3], the equation was originally developed for water flow in larger pipes (diameters greater than 5 cm) and lower velocities 
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(lower than 3 m/s) [4]. In practice, however, it appears that engineers do use the Hazen-Williams equation for smaller 

diameters [5] and larger velocities [6], though it is restricted for use with water and not with other fluids [1, 4]. 

 A major advantage of the Hazen-Williams equation over the Darcy-Weisbach equation is in solving Type II and Type 

III pipe flow problems in which flow rate and pipe diameter are unknowns, respectively. Use of Eq. (1) allows for velocity 

or diameter (via hydraulic radius) to be solved for directly, whereas use of the Darcy friction factor requires an iterative 

procedure. Furthermore, references such as [5] and [6] give extensive values for C that also take into account the effective 

roughening of a pipe surface due to corrosion over time. Disadvantages include its use being limited only to water, and the 

lack of a theory behind its form. 

 

2. Conversion Method 
 For cases in which information about only one roughness parameter is available and one wishes to employ the opposite 

pipe flow equation, a reliable method to convert roughness parameters is desirable. Walski et al. [7] outline such a method 

based on eliminating head loss per unit length between the flow equations and assuming a water velocity of 0.9 m/s as a 

representative value. This approach gives a somewhat “theoretical” relationship between ε and C. In the present work velocity 

is eliminated between the flow equations instead, and the resulting equation is used as the basis of correlating existing 

accepted values of ε and C to one another. 

 
2.1. Derivation of Conversion Equation 
 The Colebrook-White equation relating Darcy friction factor to Reynolds number and relative roughness is given by  
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 Using the definition of Reynolds number and solving Eq. 1 for f and then substituting into Eq. 4 yields after much 

manipulation 
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 where ν is the kinematic viscosity. Equating Eq. 5 with the Hazen-Williams relation given by Eq. 3, and recognizing 

that D = 4Rh, results in the following expression for C: 
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 where K1 = 3.46 s/m0.37. 

 Further simplifications can be made by assuming wholly turbulent flow, which makes the second term within the 

natural logarithm small compared to the first, and additionally assuming that the head loss per unit length is dominated by 

diameter and is therefore directly proportional to it. This gives 
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 where K2 is an additional dimensional constant and the exponent n is employed in place of 0.04 in order to give more 

flexibility in curve fitting roughness data. We would expect, however, that n should be on the order of 0.04. 
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2.2. Determination of Equation Constants 

 Equation (7) was used to relate the extensive C and ε data compiled in [5] in order to optimize the K2 and n parameters. 

The specific materials and roughness values were chosen so as to minimize the ambiguity between ε and the corresponding 

values of C, and to span a large range of sand-grain roughness over several orders of magnitude. The specific values used in 

this study are given in Table 1. 

 
Table 1: Values of sand-grain roughness and Hazen-Williams coefficient used in parameter optimization. (Taken from Lamont [5].) 

 

Material 
ε 

[mm] 

C values at various pipe diameters 

2.5 cm 7.6 cm 15.2 cm 30.5 cm 61 cm 122 cm 

Wrought iron 0.05 129 137 142    

Coated cast iron 0.125  129 133 138 140 141 

Uncoated cast iron 0.25  121 125 130 132 134 

Concrete (Scobey Class 3) 0.50  109 116 121 125 127 

Concrete (Scobey Class 2) 1.25  95 102 106 110 113 

 

 A least squares fit of the data in Table 1 as correlated by Eq. 7 yields values of K2 = 1.30 m-0.062 and n = 0.062. 

Substitution of these values into Eq. (7) gives 
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 where A = K1K2 = 4.438 s/m0.432. 

 

3. Results and Discussion 
 Figure 1 shows a comparison between the accepted values of Hazen-Williams coefficient as given in Lamont [5] and 

values as predicted by Eq. 8 for various sand-grain roughnesses and pipe diameters. For the range of roughness and diameters 

shown here, the predicted values are in very good agreement with the accepted values. The larger discrepancies seen at lower 

values of sand-grain roughness would likely not contribute to significant calculation errors when using the Hazen-Williams 

equation, since the values of C correspond to very smooth pipes.  

A correlation developed by Walski et al. [7] to predict C based on sand-grain roughness is given by 

 











D
C


log2.370.18 . (9) 

 

Both Eqs. 8 and 9 result from inferring a relationship between C and ε based on Eqs. 1 and 3, and both may be deemed semi-

empirical. In the present work, however, the resulting equation is used to correlate C and ε data, whereas Eq. 9 seeks to 

predict C based only on the resulting relationship without incorporating such information. In other words Eq. 9 predicts what 

C ought to be for a given ε, whereas Eq. 8 is an attempt to well-correlate actually known values of C and ε to one another. It 

should also be noted that Walski et al. [7] assume a representative water velocity of V = 0.9 m/s in order to derive the final 

form of Eq. 9. The derivation of Eq. 8 does not make any explicit assumption regarding velocity, though it may certainly be 

true that it serves as a better prediction tool at particular velocities then at others. 
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Fig. 1: Comparison of converted values of Hazen-Williams coefficient to accepted values for various sand-grain roughnessess. 
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 Figure 2 shows predictions for C as given by Eqs. 8 and 9 plotted against the accepted values for the entire range of ε 

and D values given in Table 1. A perfect prediction would fall on the solid line, which has a slope of one. The two dotted 

lines enclose the accepted value of C to ±5%. 

 
Fig. 2: Comparison of prediction methods for C as given by Eq. 8 and Walski et al. [7]. 

 

 Figure 2 shows that Eq. 8 well predicts C based on ε and D, giving an improved estimate over that of Eq. 9. The 

average absolute value of error for the predictions based on Eq. 8 is 2.3%, with the largest error falling just under 6%. The 

corresponding values for average and largest error when using Eq. (9) are 7% and 18%, respectively. Naturally the use of 

Eq. 8 should be limited to the ranges of ε and D which were employed in its development. 

 

4. Conclusion 
 An improved method of predicting the Hazen-Williams coefficient from knowledge of equivalent sand-grain 

roughness has been presented. The method is based on a relation resulting from combining the Hazen-Williams, Darcy-

Weisbach, and the Colebrook-White equations. This relation serves as the basis of a parameter optimization scheme for 

correlating existing experimental data for sand-grain roughness and Hazen-Williams coefficient. For the range of sand-grain 

roughnesses investigated, ε = 0.05-1.25 mm,  predicted values of Hazen-Williams coefficient show an average absolute value 

of deviation of 2.3% from the accepted published values, with the highest deviation not exceeding 6%. The developed relation 

provides more accurate estimates for Hazen-Williams roughness values than do previous methods, which do not incorporate 

experimental data for roughness. The correlation should provide a useful tool for the conversion of roughness values where 

data are not readily available. 

 

Acknowledgements 
 The author wishes to thank Tomás Jimenez for inspiring the idea on which this research is based.  

 

References 
[1]  R. M. Olson and S. J. Wright, Essential of Engineering Fluid Mechanics, 5th Ed. St. Louis, MO: Harper and Row, 

Publishers, 1990. 

[2]  G. S. Williams and A. Hazen, Hydraulics Tables. New York: John Wiley and Sons, 1920. 

-5% 

+5% 



 

HTFF 119-6 

[3]  L. A. Mays, Water Resources Engineering, 2nd Ed. New York: John Wiley and Sons, 2011. 

[4]  R. J. Houghtalen, N. H. C. Hwang, and A. O. H. Akan, Fundamentals of Hydraulic Engineering Systems, 4th Ed. Saddle 

River NJ: Prentice Hall, 2010. 

[5]  P. A. Lamont, “Common pipe flow formulas compared with the theory of roughness” J. Am. Water Works Assoc., vol. 

73, no. 5, pp. 274-280, 1981. 

[6]  T. M. Walski, D. V. Chase, and W. Grayman, “Modeling Theory,” in Advanced Water Distribution Modeling and 

Management. Exton, PA: Bentley Institute Press, 2007, pp. 19-74. 

[7]  T. M. Walski, W. W. Sharp, and F. D. Shields, “Predicting Internal Roughness in Water Mains,” Miscellaneous Paper 
EL-88-2, US Army Engineer Waterways Experiment Station, Vicksburg, MS, 1988.  

 


