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Abstract - In the present study, the capabilities of two machine learning (ML) regression methods, support vector regression (SVR) and 
kernel ridge regression (KRR), to predict heat transfer coefficients (HTCs) in air-cooled heat sinks (HSs) are evaluated. Within the 
laminar regime, HSs with different geometrical parameters and at five different Reynolds numbers are considered for the simulations. 
Since the focus of the present study is the proof-of-concept, the ML-based models are developed using limited numbers of input data. 
The input data are prepared by solving three-dimensional equations of continuity, momentum, and energy inside the channels of HSs. 
Results indicate that both SVR and KRR predict HTCs with excellent accuracy and within ±1.9% of simulated values. The present study 
suggests that both SVR and KRR are promising design tools to predict hydrothermal performances of thermal systems using sufficiently 
large and accurate input data. Such precise ML-based models will be excellent alternatives to expensive experimental and computational 
efforts that are required to develop physics-based correlations for predicting hydrothermal performances of engineering systems. 
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1. Introduction 

Machine learning (ML), as a subset of artificial intelligence, is a powerful data-driven method that allows computers to 
learn from a training dataset to predict new data [1, 2]. Accurate ML-based models overcome the challenges of expensive 
experimental and computational techniques for developing physics-based models [3]. Different mathematics-based 
algorithms in ML such as artificial neural network (ANN) [4], support vector regression (SVR) [5], and kernel ridge 
regression (KRR) [6] have been widely used for regression and classification analysis. However, selecting appropriate ML 
techniques to predict hydrothermal performances of engineering systems highly depends on understanding the capabilities 
of the individual ML methods and algorithms. As a result, comparing the effectiveness of different ML techniques to predict 
thermo-fluid characteristics of engineering systems is essential to understand the capabilities of individual ML techniques. 
In the present study, two different ML regression methods, support vector regression (SVR) and kernel ridge regression 
(KRR), are used to predict heat transfer coefficients (HTCs) in air-cooled heat sinks (HSs). SVR is a powerful ML algorithm 
for problems involving limited samples [7], and KRR is an efficient method when a nonlinear fit is desired [8].  

Input data preparation is an essential step to develop a ML-based model. The input data are divided into training and 
testing datasets. The training dataset is used to train the ML’s model using the input-output patterns of the dataset, and the 
testing dataset is used to test the accuracy of the model after training. In the present study, the input data are provided through 
three-dimensional simulations of laminar flow and heat transfer inside channels of air-cooled HSs. Air-cooled HSs, 
schematically shown in Fig. 1, consist of a series of parallel rectangular cross-sectional channels. These cooling systems are 
among the most widely used thermal management solutions due to their simplicity and low-cost manufacturing [9]. The 
channel’s length, height, and width are represented by 𝐿𝐿, 𝐻𝐻, and 𝑊𝑊ch respectively in Fig. 1, and 𝑡𝑡𝑓𝑓, 𝑡𝑡𝑏𝑏, and 𝑡𝑡𝑡𝑡, are the fin 
thickness, the base thickness, and the thickness of the top plate, respectively. For the input data preparation, six HSs with 
30 mm ≤ 𝐻𝐻 ≤ 40 mm and 2.5 mm ≤ 𝑊𝑊ch ≤ 5 mm, and fixed values of 𝐿𝐿 = 200 mm, 𝑡𝑡𝑓𝑓 = 1 mm, and 𝑡𝑡𝑏𝑏 = 𝑡𝑡𝑡𝑡 = 0 are 
considered. The thermal performance of each HS is described by HTC. The hydraulic diameter of the channel is used to 
determine Reynolds number (Re). Simulations are performed for each HS in a laminar flow with five different Re, up to 
Re = 2200. The training dataset is selected randomly from 83% of the input data; the remaining data are the testing dataset. 
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Both the training and network accuracy are evaluated by the mean absolute error (MAE). Since the present study is 
performed for the purpose of proof-of-concept, the ML-based models are developed using limited numbers of input data. 
When the accuracies of ML’s algorithms are demonstrated, an extensive range of design and operational parameters for 
engineering systems like HSs can be prepared as input data to develop comprehensive ML-based models to predict 
hydrothermal performances of systems. Table 1 lists the parameters used for the ML regression methods in this study. 

Due to the uniform flow and symmetry of the configuration of fin arrays in the HSs, only one channel plus half of 
the fins is considered in the computational domain. In the vertical dimension, the computational domain covers the HS’s 
base to the fin height. In the longitudinal direction, the computational domain covers three times and ten times of 𝐿𝐿 as 
the upstream and downstream, respectively, in addition to the HS’s length. The governing equations by assuming a 
steady, laminar, and incompressible flow, as well as constant properties for the fluid (i.e., air) and the solid (i.e., 
aluminium) are as follows: 

 
Continuity: ∇.𝒖𝒖 = 0 (1) 
Momentum conservation: (𝒖𝒖.∇)𝜌𝜌𝒖𝒖 = −∇𝑝𝑝 + 𝜇𝜇∇2𝒖𝒖 (2) 
Energy conservation (fluid): 

𝒖𝒖.∇𝑇𝑇𝑓𝑓 =
𝜆𝜆
𝜌𝜌𝑐𝑐𝑝𝑝

∇2𝑇𝑇𝑓𝑓 (3) 

Energy conservation (solid): ∇2𝑇𝑇𝑠𝑠 = 0 (4) 
 
where 𝜌𝜌, 𝑢𝑢, 𝑝𝑝, 𝜇𝜇, 𝜆𝜆, 𝑐𝑐𝑝𝑝, and 𝑇𝑇𝑓𝑓 are the fluid density, velocity, pressure, viscosity, thermal conductivity, specific heat, 

and temperature, respectively, and 𝑇𝑇𝑠𝑠 is the temperature of the solid. Airflow rates and temperature (22℃) are set at the 
inlet. Zero axial gradients for all the variables are imposed at the outlet. The remaining surfaces are walls with a no-slip 
boundary condition. A fixed temperature of 50℃ is set at the base of heat sink to represent the heat source. At the 
interface of fluid and solid, the conjugate problem of Fourier’s steady-state heat conduction equation with convection 
in the fluid are solved, simultaneously [10]. The remaining surfaces are insulated. Although all the simulations are 
performed using sufficiently fine grid structures, grid independence tests are not conducted because the purpose of this 
research is not verifying the accuracy of CFD analysis but evaluating the capabilities of ML’s techniques to predict 
CFD-based HTCs. Ansys Fluent is used to solve the governing equations. 

 
Fig. 1: Schematic of the heat sink. 

 
Table 1: Parameters of the ML regression models in this study. 

Model Hyperparameters 
SVR Kernel: RBF; 𝐶𝐶 = 20; 𝜀𝜀 = 0.001; 𝛾𝛾 = 0.615 
KRR Kernel: RBF; 𝛼𝛼 = 1 × 10−6; 𝛾𝛾 = 0.0127 
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2. Results 
Corresponding MAE for the testing dataset is lower than 0.13 and 0.14 for the SRV and KRR models, respectively, 

which indicates the high accuracy of the ML-based models in this study. Figs. 2 and 3 compare the predicted and simulated 
simulated HTCs obtained by SVR and KRR methods, respectively. The difference between the predicted and simulated HTC 
HTC is calculated as (HTCCFD − HTCML) HTCCFD × 100⁄ , which the indices CFD and ML stand for the CFD-based and 
and ML-based HTCs, respectively. Both SVR and KRR predict HTCs with excellent accuracy and within ±1.4% and ±1.9% 
of simulated values, respectively. Such high accuracy suggests that SVR and KRR are promising design tools for HSs, as 
well as excellent alternatives to experimental and computational efforts to predict thermal performances of HSs if enough 
numbers of accurate data points are provided as inputs. 

 

 
Fig. 2: Comparison between predicted HTC by SVR approach and CFD-based HTC. 

 

 
Fig. 3: Comparison between predicted HTC by KRR approach and CFD-based HTC. 
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3. Conclusion 

Two ML-based models using SVR and KRR methods were developed to predict HTCs of air-cooled HSs operating 
within a laminar flow. The input data were provided through three-dimensional CFD analysis. Since the purpose of this 
was the proof-of-concept to demonstrate the capabilities of ML-based techniques to predict thermal performances of 
the models were developed using limited numbers of input data. Both ML-based techniques predicted the simulated 
with excellent accuracy and within ±1.9% of CFD-based values. A remarkable advantage of an accurate ML-based 
model is its independency from variables that are required by physics-based correlations to describe hydrothermal 
performances of engineering systems. A ML-based model is developed through a training process and using input-output 
patterns of input dataset. As a result, if large numbers of input-output performance data of an engineering system within 
a sufficiently wide range of design and operational parameters are provided as the input dataset, the developed ML-
based models can predict the hydrothermal performances of the system independent from key parameters that affect the 
thermo-fluid physics of the problem. 
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