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Abstract –  Despite being discovered more than a century ago, there is still  a lack of understanding regarding the porous media
analogue of the Hele-Shaw cell. It offers visualization of fluid flow and enhances knowledge of heat transfer in various technical
applications.  This  study introduced a mathematical  model  of  forced convection around a cylinder within a Hele-Shaw cell.  The
equations governing forced convection of  porous media are modelled using the continuity equation, Navier-Stokes equation,  and
conservation of energy equation, under reasonable assumptions. Non-dimensionalization was carried out using the Buckingham Pi
Theorem. The mathematical model was solved using the CFD software ANSYS Fluent, and the results were validated against available
experimental  and  theoretical  data  from the  literature.  Simulation  of  forced  convection  over  a  cylinder  in  a  Hele-Shaw cell  we
performed. The results showed that the Reynolds number has the direct impact on the Nusselt number. In general, as the Reynolds
number increase, the Nusselt number also increases. This shows that the convection around the cylinder becomes more efficient when
higher Reynolds numbers are applied to the system.
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1. Introduction
Research on fluid flow and heat transfer in porous media has been conducted for many years because of its practical

applicability.  Applications  include  geothermal  reservoirs,  underground  water  flow,  solar  collectors  [1],  packed-bed
reactors, catalytic and chemical particle beds, solid-matrix heat exchangers [2], tumour growth modelling [3], cooling of
electronic devices, as well as various medical and biological issues. One of the main concerns about the porous medium is
the fluid behaviours and convective heat transmission inside the system.

The Hele-Shaw cell is a device consisting of two closely spaced parallel plates, designed for modelling porous media
[4].  The  Hele-Shaw model  was initially  created  to  analyze the potential  flow around bodies  of  different  shapes  [5].
Although the Hele-Shaw cell was discovered more than a century ago, studies on porous media analogies are scarce, both
in the theoretical and numerical aspects. The convection around a cylinder embedded in a Hele-Shaw cell is an intriguing
and significant topic with high practical potential, but research in this area has been found to be lacking. Many studies have
been conducted on convection from a cylinder within a porous medium, but few precisely in a Hele-Shaw cell. This study
presents the mathematical modelling of forced convection around a heated cylinder enclosed in a Hele-Shaw cell, which is
anticipated to provide insights into the topic and the fundamentals needed for future studies involving Hele-Shaw cell.

2. Problem Statement
A cylinder is positioned horizontally in a vertical Hele-Shaw cell and then heated. Assumptions are made at the start

of the modelling process. It is assumed that the fluid is incompressible, the flow is in laminar form, the temperature of the
fluid is below boiling point and the properties of the fluid, including thermal conductivity, viscosity, specific heat and
thermal expansion coefficient, are constant.

The temperature (T) and pressure (P) are considered to change across the small thickness of the Hele-Shaw cell (h).

T=T ( x , y ) , P=P ( x , y )
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The  3-dimensional  conventional  continuity,  Navier-Stokes  (momentum),  and  energy  equations  derived  from  the
previously mentioned assumptions are provided as follows:
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=0, (1)
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where u, v and w  are the velocity profiles in the x, y and z direction, p is the pressure, T  is the temperature of the fluid, ρ
is the density, cp is specific heat, k is thermal conductivity, and υ is the kinematic viscosity.

As per Zhak et al [6], h is significantly lower than the radius of the cylinder (r), i.e., h ≪ r, as depicted in Fig. 1.
Due to the confined space between the wall and the 𝑧-axis, it is assumed that there is no motion along the z-axis in the
Hele-Shaw cell. This leads to the realization of the Poiseuille profile for both longitudinal and transverse velocity profiles
in a porous medium, as depicted below, with the velocity profile 𝑤=0.

u ( x , y , z )=3
2
u0(1−4 z2h2 ), (5)

v ( x , y , z )=3
2
v0(1−4 z2h2 ). (6)
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Fig. 1: Schematic figure of a heated cylinder embedded in Hele-Shaw cell

Next, substitute equations (5) and (6) into equations (1), (2), (3), and (4). The system will be integrated throughout the

z-direction  from  z=+h
2  to  z=−h

2 .  The  three-dimensional  set  of  equations  will  be  simplified  to  a  two-dimensional

momentum and heat transfer phenomenon in a Hele-Shaw cell at the centre plane 𝑧=0.
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=0, (7)
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The last terms in equations (8) and (9) are diffusion terms obtained from z-axis diffusion terms. Equations (7), (8), (9), and
(10) represent the system of equations governing forced convection in the Hele-Shaw cell.

Dimensional analysis was done on the governing equation, which led to the following function: 

Nu=f (ℜ , Pr , h
D )          (11)

Where D is the diameter of the cylinder, Re is the Reynolds number (
ρVD
μ ) and Pr is the Prandtl number (

c pμ
k

).

As the dimensionless variables are defined as following:

X= x
D

,Y= y
D
,U=

u0
u
,V=

v0
v
, H= h

D
,θ=

T−T0
T w−T 0

,

where u and v are the upstream velocity in x and y directions, T 0 is the bulk temperature, and T w is the wall temperature. 
H is the ratio of Hele-Shaw cell thickness (h) to the diameter of the cylinder (D), as shown in equation (11) using

dimensionless variables. Therefore, equation (11) may be rewritten as

Nu=f (ℜ ,Pr ,H )          (12)

The non-dimensional governing equations as given below:
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The equations provided involve four unknowns: velocity in the 𝑋-axis (𝑈), velocity in the 𝑌-axis (𝑉), pressure (𝑃),
and temperature (𝜃). The Darcy number (Da) is defined as

Da= K
d2

 (17)

where  K  is the permeability of the medium, and  d is the characteristic length, in this case, the diameter of  the

cylinder, D. The permeability of the Hele-Shaw cell is h
2

12
 [5][8]. Substitute into equation (17), thus

Da= h2

12D2  . (18)

Hence, the dimensionless Darcy number can become

Da=H2

12
 . (19)

Substitute the Darcy number into equations (14) and (15), it becomes

6
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Hence, the set of governing equations to be solved are given by equations (13), (16), (20) and (21).

3. Numerical Setup
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The governing equations will then be solved using CFD software ANSYS Fluent. The boundary conditions for non-
dimensional governing equations above as shown in Table 1:

Table 1: Non-Dimensional Boundary Conditions

U V T
Inlet U∞=1 0 T ∞=0
Walls 0 0 0
Outlet 0 0 0
Cylinder 0 0 T=1

The simulation domain is modelled after the experimental geometry of Zhak et al [6], which was used to investigate
mass transfer for a similar physical event. DesignModeler, an embedded tool within ANSYS, was utilized for creating the
geometry. A rectangular plane was sketched, and a small cylinder with a diameter of D was positioned on the plane. Fig. 2
shows the geometry used in the current simulation.

Fig. 2: The experimental setup by Zhak et al. [6] (Left), the plane geometry pf a 2-D Hele-Shaw cell with a cylinder
created using DesignModeler (Right)

Fig. 3 shows the close-up mesh of the computing domain around the cylinder. The All Triangles Method was selected
for the  mesh element shape. In the meshing setup, Inflation was added to the cylinder that was placed as the boundary
edge. The maximum number of layers was set to 2, and the growth rate was set at 1.2. Edge sizing was applied at the
cylinder boundary edge, specifying the sizing type as the number of divisions.
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Fig. 3: Close-up mesh around the cylinder in the computation domain

4. Validation
The validation was conducted by comparing the coefficient of friction (Cf) at the stagnation point of the cylinder in

reference [7] with the findings obtained from the simulations. In Fig. 4, it is shown that there is a good agreement between
these results, where trendlines behave similarly, especially between calculation and current studies.
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Fig. 4: Comparison of the results found in [7] (Left), with the results obtained in the current study including calculation by
formula and simulations results (Right)

5. Results
The system of equations representing the forced convection around a cylinder placed inside a Hele-Shaw cell was

solved  for  Reynolds numbers  ranging  from 100 to  5000.  The  temperature  difference  contour  images  for  the  forced
convection around a heated cylinder contained in a Hele-Shaw cell at Reynolds numbers of 100 and 5000, respectively, are
shown below in Fig. 5. A temperature plume line that extends from the cylinder's rear to its far back can be seen in all the
figures. Even though the figure produced comparable findings, it is noticeable that the plume line thickens with increasing
Reynolds number.

 
Fig. 5: The temperature difference of forced convection around a heated single cylinder embedded in Hele-Shaw cell at

Reynolds number 100 (left) and 5000 (right)
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Fig. 6 displays the increase in Nusselt number as the Reynolds number rises from 100 to 5000. The Nusselt number
grows exponentially up to Re = 1000. Beyond Re = 1000, the increase in Nusselt  number is directly proportional to
Reynolds numbers up to Re = 5000. 
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Fig. 6 Reynolds number (from 100 to 5000) vs Nusselt number 

It may be stated that in forced convection of a heated cylinder embedded in a Hele-Shaw cell, the Reynolds number
does influence the Nusselt number. The Nusselt number increases with the Reynolds number in general.

6. Conclusion
The study focused on the mathematical modelling of forced convection around a heated cylinder enclosed in a Hele-

Shaw cell. The governing equations have been derived, solved, and simulated using ANSYS Fluent. The analysis revealed
that the Reynolds number significantly impacts the Nusselt number, with exponential growth observed at lower Reynolds
numbers up to Re = 1000 and proportional growth at higher Reynolds numbers between Re = 1000 and 5000. The study
provides valuable insights into the behaviour of fluid flow and heat transfer in the Hele-Shaw cell system, particularly in
the context of a heated cylinder.
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