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Abstract -  In this research, an adjoint method is employed to optimize the nose and tail of an Autonomous Underwater Vehicle
(AUV). The drag force, which has a significant impact on energy consumption, is considered as an objective function to be minimized,
while the partial volume is chosen as a constraint. The entire procedure is carried out utilizing two open-source softwares: Salome
(CAD and mesh generator) and OpenFOAM v2206 (CFD solver and optimizer). Reynolds-averaged Navier-Stokes equations with the
k-ω SST turbulence model are used to simulate the turbulent flow around the AUV. Besides, the constrained optimization is performed
using the adjointOptimisationFoam, a 3D steady-state adjoint Navier-Stokes incompressible solver in OpenFOAM v2206. The drag
force obtained from this study is validated against experimental results, indicating a good agreement (a 0.58% discrepancy). According
to the results, the optimized AUV indicates a 3.25% reduction in drag force over the baseline after nine optimization cycles.
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1. Introduction
The use of Autonomous Underwater Vehicles (AUVs) is becoming more prevalent in scientific and commercial fields

due to their advantages of versatility and low cost compared to manned vehicles [1, 2]. AUV is one of the most cutting-
edge  technologies  developed  in  global  maritime  engineering  over  the  last  two  decades,  combining  a  variety  of
technologies, including energy, sensing, navigation, communication, and propulsion technologies [2].

A majority of AUVs have a relatively short range because of energy technology restrictions, making them incapable of
performing operations on a broad scale of time and space [3]. AUVs are typically powered by either lithium-ion batteries
[4] or fuel cells [5]. One way to address the challenge of long-term maritime operations by AUVs is to minimize their
power requirements [6]. As a substantial percentage of power loss is attributable to the resistance provided by the water to
the AUV, an in-depth study of the hydrodynamic characteristics can result in the fabrication of AUVs with optimum shape
control and navigation systems [7]. Various studies have been theoretically [8], experimentally [9], and numerically [10]
carried out to investigate the hydrodynamic characteristics of AUVs. Computational Fluid Dynamics (CFD) has been
widely employed as a potent analysis tool for predicting the hydrodynamic forces and flow characteristics of AUVs due to
its cheap computing cost, high efficiency, and good accuracy [11]. Several numerical studies have been carried out to
predict the hydrodynamic forces of AUVs. For example, Dantas and De Barros [10] numerically investigated the effects of
control surface deflection and the angle of attack on the hydrodynamic performance of the Pirajuba AUV. ANSYS Fluent
was employed as a CFD solver by choosing the k-ω SST turbulence model for the simulation of the turbulent flow around
AUV. According to the results, the control surface stall is determined by a linear relationship between the angle of attack
and the control surface deflection. A majority of AUV simulations have been done using two-equation turbulence models,
namely either k-ε or k–ω models. 

Thanks to the swift advancement of contemporary computer technology, CFD has created a rush of interest in using
high-fidelity  computational  techniques  not  just  as  an  analysis  tool  but  also  as  an  optimization  tool  [2].  As  a  result,
researchers have focused on the optimization of AUVs as a crucial aspect of improving their hydrodynamic efficiency and
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reducing  energy  consumption  [2].  AUV  shape  optimizations  have  been  undertaken  using  different  non-gradient
optimization methods, such as Design of Experiment (DoE) [12] and stochastic optimization methods [13]. Joung et al.
[12] optimized a torpedo-shaped AUV to minimize drag forces with consideration of three different design variables: the
location of the sail relative to the bow, the separation between the sail and the acoustic, and the angle of attack of the
nozzle. The turbulent flow around the AUV was simulated using the k-ε turbulence model in ANSYS-CFX. Besides, the
optimal values of the design parameters were explored using the DOE method in ANSYS-Design Exploration. Alam et al.
[13]  developed  an  optimization  framework  based  on  a  non-dominated  sorting  genetic  algorithm (NSGA-II)  and  an
infeasibility-driven evolutionary algorithm (IDEA) for single and multi-objective optimizations [13]. The framework was
built by linking MATLAB and CATIA to reduce design cycle time. The framework was applied to optimize a hull AUV in
terms of drag reduction. The optimized AUV was fabricated and tested in a swimming pool to measure the hydrodynamic
forces. The experimental results were validated against CFD results obtained from ANSYS Fluent. 

While the adjoint approach as a gradient-based method, has gained interest in shape optimization, particularly in
turbomachinery, it has not been used for AUV optimization. The adjoint method provides an efficient way to compute
derivatives of an objective function with respect  to design variables  with low computational  cost  independent  of the
number of design variables [14]. Therefore, this work aims to optimize an AUV using an adjoint solver available in
OpenFOAM v2206 in terms of drag reduction. The second section outlines the numerical modelling, including governing
equations, boundary conditions, mesh grid, AUV geometry, validation, and the optimization process. In the third section,
the outcomes of AUV optimization are provided, and the article is then concluded.

2. Numerical modelling
A 3D steady-state Navier–Stokes incompressible solver (SimpleFoam) in OpenFOAM v2206 is employed to simulate

the 3D turbulent flow around two AUV hulls. Besides, the AUV optimization has been carried out using a 3D steady-state
adjoint Navier–Stokes incompressible solver (adjointOptimisationFoam) in OpenFOAM v2206.

2.1. Governing equations and numerical method
The governing equations  are  the  Reynolds-averaged Navier-Stokes  (RANS) equations  for  the  steady flow of  an

incompressible fluid. The RANS equations are presented as follows:
 

RP=
−∂v j

∂ x j
=0 (1)
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where viand p are the velocity components and the static pressure, respectively. Also, τ ij= (ν +ν t) ( ∂v i∂ x j
+
∂v j

∂x i )represents

the viscous stress tensor. ν and ν t denote the kinematic viscosity and turbulent viscosity, respectively. Yu et al. [15] and
Hong et al. [16] found that the k-ω SST is more accurate than the k-ε RNG. Therefore, k-ω SST is used as a turbulence
model.  The adjoint equations should be derived using incompressible Navier-Stokes equations and the k-ω SST turbulence
model.  The derivation method is neglected here due to its extensive length. The final form of the adjoint mean-flow
equations is proposed as follows:  
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−∂u j

∂ x j
=0 (3)
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where vi,  q, and  τ ij
adenote adjoint velocity components, the adjoint static pressure, and the adjoint viscous stress tensor.

Also, several extra terms (denoted by Ml, l = 1, 2, 3). 
To simulate the turbulent flow around the AUV, the two-equation turbulence model (k-ω SST) is used.  For spatial

discretization, a fully second-order method is applied to minimize excessive numerical dissipation while maintaining a
predetermined  degree  of  accuracy.  The  same  approaches  are  also  employed  for  solving  the  adjoint  Navier-Stokes
equations. 

2.2. AUV geometry
The baseline AUV used in this study was designed by Alam et al. [13]. The AUV was globally optimized for drag

reduction using two distinct gradient-free approaches (NSGA-II and IDEA) [13]. In this research, the AUV is locally
optimized using the adjoint method. The AUV consists of three primary components: a nose cone, a parallel cylindrical
mid-section, and a tapering tail section, as seen in Fig. 1.

Fig. 1: The hull geometry parameterization [13].

The curvature of the nose and tail parts are obtained from Eqs. (5, 6):

yn=
1
2
d+[1−( ln−xn

ln )
nn]

1
nn   (5)

where yn, d, ln, xn, nn, lm represent the radius of the nose, the maximum body diameter, which may be changed, the length of
the nose, the shape variation coefficient of the nose which may also be changed to create the different nose, and the mid-
section length, respectively.

2 y t=9.6556 xt
3−4.9 x t

2+0.05 xt+d   (6)

In Eq. (6),  lt, yt, and xt are the tail length, the tail radius, and the reference length, changed from 0 to  lt. The AUV
created by SOLIDWORKS is shown in Fig. 2.

Fig. 2: The bare hull [13].
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2.3. Boundary conditions & mesh grid
As the mid-section of AUV is cylindrical, the computational domain is also considered to be cylindrical to achieve a

better mesh distribution over the entire domain. Fig. 3 depicts the computational domain. AUV with a length (L) of 1.3 m
at distances  of 17L from the inlet  and outlet.  Besides,  the length of  the domain and the diameter  are 34L and 20L,
respectively. A constant velocity (v = 2 m/s) with zero pressure gradient is imposed at the inlet (equivalent to a Reynolds
number ReL = 2 ×106). No slip condition and zero pressure gradient are imposed on the AUV. Ambient pressure and zero
velocity gradient are chosen for the outlet. Symmetry is imposed on the domain side.

Fig. 3: Computational domain of AUV.

Salome is employed to generate an unstructured mesh grid for the computational domain, consisting of 26 prismatic
layers around AUV. The computational domain has around two million mesh cells,  including approximately 200,000
prismatic mesh cells and 1.8 million elements (Fig. 4). The maximum value of the wall coordinates y+ is around 0.9.
Three distinct mesh grids (0.98 (coarse), 2.03 (medium), and 3.27 (fine) million cells) have been generated for the grid
study. Approximately 3.3% and 0.15%, respectively, are the differences in drag force values between the coarse/medium
and medium/fine meshes. Since the difference in drag force between medium and fine grids is negligible, the medium grid
is used for all subsequent computations.   

  

Fig. 4: The generated grid for the computational domain.

2.4. Validation
The drag force obtained from the present study is validated against numerical and experimental results by Alam et al.

[13] and Saghafi and Lavimi [6]. As shown in Table 1, the drag force obtained in this study (medium mesh with 2 million)
is 0.58% less than the experimental results.
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Table 1: Comparison in terms of drag force for the baseline AUV between the present study and data from the literature.

CFD solver Turbulence model Num. result (N) Exp. result (N)
Alam et al. [13] ANSYS Fluent k-ε Realizable 9.448 9.6611
Saghafi and Lavimi [6] ANSYS Fluent k-ε Realizable 9.779 -
Present study OpenFOAM v2206 k-ω SST 9.605 -

2.5. Optimization process
A  3D full continuous adjoint steady-state incompressible RANS solver (adjointOptimizationFoam) in OpenFOAM

v2206 is used to optimize the nose and tail of AUV [17]. The continuous adjoint method was developed based on the k-ω
SST turbulence model. To modify the nose and tail, a set of control points are generated around the nose and tail. The
volume  around  the  nose  and  tail  of  AUV  hull  is  parameterized  using  volumetric  Non-Uniform Rational  B-Splines
Modelling (NURBS), which are rational trivariate (in 3D) B-Splines defined on non-uniform knot vectors.  During the
optimization process, the constrained projection as an optimizer is employed as an optimizer to update the design variables
by using the previously calculated sensitivity derivative.

In this study, drag force and partial volume are considered as objective function and constraint, respectively. Force
(Eq. (22)) and partial volume (Eq. (23)) are defined as:

J F=
∫
Sw

❑

( pni−τ ij n j
)ri d Sw

1
2
A U∞

2
  (7)

where  Sw,  n, r, A, and  U∞ represent the wall patches on which force is defined, the unit normal vector, the direction in
which the force vector should be projected, the frontal area, and the far-field velocity magnitude, respectively.

JV=
V−V init

V init
  (8)

where V and Vinit are the volume enclosed by the patch defining Sw and the volume of the initial geometry, respectively.

3. Results and discussion
Fig. 5 depicts the variation of the objective function (drag force) with design cycles. Although the drag force reaches

its  lowest  value  during  the  first  optimization  cycle,  the  optimization  process  continues  for  two  reasons.  First,  the
optimization process is assumed to be converged if the objective function does not vary over subsequent optimization
cycles.  In  this  work,  as  there  is  no  variation  in  the  drag  force  from the  ninth  optimization,  it  is  assumed  that  the
optimization becomes converged. Second, the partial volume as a geometrical constraint should be constant. Yet, it varies
over the early optimization cycles. The result indicates a 3.25% reduction in drag force after nine cycles. As seen in Fig. 6,
the optimized nose exhibits a smoother curvature compared to the baseline. Besides, the optimized tail is slightly thicker
than the baseline.
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Fig. 5: History of the drag force.

Fig. 7 illustrates pressure coefficient contours around the baseline and optimized AUV. In the front of the nose, the
region with the highest pressure is visible. This region is slightly diminished in optimized AUV. The magnitude velocity
contours around the baseline and optimized AUVs are shown in Fig. 8. According to the velocity contours, the blue region
around the tail, which has a zero speed, indicates the flow separation. As it can be seen, this region is weaker in the
optimized AUV compared to the baseline.

Fig. 6: Comparison of nose (a) and tail (b) between the baseline and optimized profiles. 

4. Conclusion
This study focused on optimizing the nose and tail of an AUV using the adjoint technique. The drag force, which has a

significant impact on energy consumption, was selected as an objective function to be reduced while the partial volume
was considered as a constraint. The AUV length is 1.3 m which was optimized at a speed of 2 m/s (Re L =2×106). Salome
(CAD and mesh generator) and OpenFOAM v2206 (CFD solver and optimizer) were employed to perform the whole
process. Reynolds-averaged Navier-Stokes equations with the k-omega SST turbulence model were used to simulate the
turbulent  flow around the AUV. The constrained AUV optimization was carried out  using a  3D steady-state  adjoint
Navier-Stokes  incompressible  solver  (adjointOptimisationFoam)  in  OpenFOAM v2206.  A  good  agreement  (a  0.58%
disparity) was found when the drag force from study was validated against the experimental data. The results demonstrated
that the optimized AUV achieved a 3.25% decrease in drag force compared to the baseline.
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Fig. 7: Pressure contours of the baseline and optimized AUVs. 

Fig. 8: Velocity magnitude contours around the baseline and optimized AUVs. 
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