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Abstract – In order to assist patients in performing upper limb activities in a normal manner, research on bimanual coordination 
is necessary for robots to assist in the rehabilitation process. The objective of this paper is to investigate brain activities in bimanual 
movements coordination to obtain and decode signals of the electroencephalogram (EEG) in bimanual movements in both real and 
virtual environments. We designed three paradigms of bimanual coordination tasks to collect and analyse EEG signals, including 
(1) raise both hands vertically, (2) spread both hands horizontally, (3) left hand horizontally spread to the left, right hand vertically 
rise upwards. We aim to classify the three types of the motions using persistent homology-based machine learning techniques. First 
we extract topological features from functional connectivity network and effective connectivity network based on correlations 
between channels. In particular, the persistent diagrams and persistent landscapes are calculated. Then we use them as input for the 
classification. Our results show that the highest average binary classification accuracies which is functional connectivity network 
(FC)+Persistent Scale Space kernel (PSSK), has an accuracy of only 72.48%±1.07% in the real environment. The design of our 
experimental paradigm and the classification results demonstrated the preliminary exploration and indicated the feasibility of 
decoding the bimanual coordination on EEG. In the future, we would expand the size of subjects and improve the topological data 
analysis methods for further exploration of EEG in the field of decoding two-handed coordination. 
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1. Introduction  

In everyday life, two hands are usually used together to perform certain tasks or work. Therefore, bimanual 
movements are crucial and quite common in everyday activities. Compared to single-handed movements, bimanual 
coordination is gradually attracting more attention from researchers in the field of robotic rehabilitation [1]. How to 
record, analyse and decode the motion parameters of bimanual movements has become an important issue, which has 
not been thoroughly studied. Despite the success of the techniques such as invasive BCI in decoding bimanual 
coordination movements concerning brain actions, there are also some limitations to the security of such systems. 
Furthermore, the potential limitations of invasive BCI in the long term may restrict their clinical applications [2]. 

Electroencephalogram (EEG) signals and electromyography (EMG) signals are the most used methods to decode 
movements. Compared to using EMG signals (electromyogram, the recorded bioelectricity pattern of muscles), using 
EEG signals could detect movement intention faster. Wang et al. summarise that decoding hand movement parameters 
from EEG signals is feasible. We can extract hand kinematic information from EEG signals and decode movement 
parameters such as direction, acceleration, velocity and trajectory. Therefore, EEG-based movement intention decoding 
is an important branch in brain-computer interfaces (BCIs) [3].  

After collecting EEG data, the next step is to decode the EEG signals into useful information. Topological Data 
Analysis (TDA) is one of the approaches that can extract EEG features. TDA is very suitable for the analysis of brain 
connectivity networks in neuroscience, and the key to the analysis is the topological structure of the brain network [4]. 
The TDA method will be used to analyse the EEG network as a method to decode EEG signals. 
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In a nutshell, bimanual coordination is a fundamental aspect of daily life. This study proposes an experimental 
paradigm based on EEG that aims to simplify and decode everyday bimanual movements. The main contributions 
of this study include: (1) design the motor execution experimental paradigms to collect and analyze EEG data 
during bimanual coordination tasks; (2) After preprocessing by using independent component analysis (ICA), re-
reference, filtering and so on, use brain networks to analyze the strength of the EEG channels’ relationships and 
proceeds to apply the persistent homology method chosen to obtain the persistent diagrams before finally inputting 
them into the kernel function based SVM machine learning method to obtain the accuracy. 

The paper is organized as follows: Section 2 outlines the methodology employed in this paper. It describes the 
experimental paradigm, the human participants, and the data processing, with the data analysis by TDA and SVM. 
Section 3 details the results of brain network analysis and classification, which present in the average accuracy of 
the three subjects with the combination of the methods. Section 4 shows the discussion and then summarizes the 
results of our paper and suggests some areas of improvement based on the results. 
 
2. Methodology 
2.1. Experimental Paradigm and Experimental Execution 

Because most bimanual movements can be simplified as the coordination movements of the two hands in these 
two directions. For the design of the experimental process, we aimed to make experiments effective and concise. 
We divided the common bimanual movements into three kinds and simplify them, and designed experiments based 
on these three types of movements. The design included three types of bimanual coordination: horizontal movement 
(M1); vertical movement (M2); horizontal + vertical movement (M3). The three movements are shown in the 
diagram below Figure 1 (a). 

In a fully designed experiment, three healthy subjects (3 males), aged between 20-22, participated in the 
experiment. They were all right-handed and had normal or corrected-to-normal vision. The number and sequence 
of movements in each group of experiments were designed as a total of 30 movements in one group of experiments, 
each movement being performed 10 times, and each subject completing 5 groups of movements, with a 2-minute 
break in the middle, to avoid fatigue caused by repetition of the experiments. 

During the experiment, the tasks informed participants of their actions on the screen. In the preparation phase, 
there was a be red cross on the screen to arouse the attention, and the process lasted 4s. After then, two red eye-
catching arrows appeared on the screen, which located on the left and right sides, corresponding to the actions of 
the left and right hands. The arrows point in four directions (front, back, left and right), and the subjects completed 
the corresponding actions once according to the prompts. The process lasted for 4s. In the rest stage, the screen 
prompted the subjects to take a short rest, and the subjects could move their hands back to the original position and 
waited for the next action, which lasted for 2s. See Fig. 1 (a) and (b). And figure of the experiment in progress is 
shown in Fig. 1 (c).The experiment was conducted in an electromagnetically shielded room. Subjects were asked to 
sit on a chair in front of a table. A monitor was placed on the table, which randomly displayed the requested 
rectangular target action and was placed at a comfortable viewing distance of about 2 meters from the subject. 

Prior to the formal experiment, subjects received approximately 15 minutes of pre-training on the task and 
were asked to avoid blinking and body movements during the experiment. The formal experiment was organized 
as described previously. Subjects were strictly advised to avoid any physical exercise while the EEG was being 
recorded. 
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(a)                                (b)                                         (c)                                                           

Fig.1: Experimental setup (a) Illustration of three movements(b) Experimental process of bimanual coordination (on-screen 
screen guidance display) (c) Experiment in progress returned figure 

 
2.2. Data Acquisition 

The experiment was conducted in the laboratory provided by the School of Literature and Journalism in Sichuan 
University. The EEG cap has 66 channels, with sampling rate 500 Hz, which means it will collect 500 data points in 1s. 
There are ECOG electrode on the lower eyelid and the reference electrode on the tip of the nose and reference channels. 
Those two electrodes were processed during re-reference. In accordance with the International 10-10 System, the 
electrode locations were designated as such, with a forehead ground electrode at AFz. The data collected in the 
experiment was saved in .cdt format. The data preprocessing was done in real and virtual reality environment. We refer 
to [5] for details. 

 
2.3. Data Analysis 

The input data after preprocessing of one movement was a matrix of size 64*2500, where 64 represents the number 
of channels after re-reference and 2500 represents the total number of data points (500Hz sampling rate and 5 seconds, 
2500 = 5*500). For the data analysis, the overall methodology was presented in Fig.2.  

 
Fig.2: Process chart of data analysis. After preprocessing, data is used to extract (a) functional connectivity network (FC) to 

construct correlation matrix and effective connectivity networks (EC) to construct directed network; (b)(c) persistent diagrams are 
then constructed using Vietoris Rips and Flag complex to extract topological features from undirected/directed graph. Finally, 

topological features are input by building (d) persistent landscapes and (e) kernel functions into SVM machine learning for 
classification 
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2.4.1. Brain Connectivity Networks 
Structural connectivity referred to the physical wiring between channels, whereas functional and effective 

connectivity networks derive from neuronal activity signals from a multidimensional time series [6]. In this paper, 
strength of channels’ relationships used to distinguish between the kinds of movements made by subjects, where 
presented by functional and effective connectivity network. 

Functional connectivity was generally decided by the coherence in different channels in EEG signals [7]. And 
correlation matrices were recognized as indicating linear connectivity, especially the Pearson correlation coefficient 
could be used to assess the linear interdependency between time series. Due to functional connectivity network 
only defined the presence of statistical dependencies between time series data. One of the major problems was it 
could not describe the causal relationships of functional interaction among the channels [7]. We also applied the 
effective connectivity network to remedy this issue. 

Effective connectivity outlines the causal impacts that elements within a neural system impose on one another. 
This type of connectivity is measured using pairwise Granger causality [8]. Granger causality could be used as a 
parameter to assess whether a time series can predict another. By employing pairwise Granger causality, more 
robust estimates are obtained [9].  

 
2.4.2. Topological Data Analysis 

A simplicial complex is a topological object obtained by “gluing” together simple shapes such as points, links, 
surfaces, and higher dimension objects.  For mathematical details, we refer to [10]. In short,  simplicial complex is 
a generalization of a triangle to any dimension. For example, in 2-D, we refer to a 2-D simplex as a triangle, a 3-D 
simplex as a regular tetrahedron, and a 4-D simplex as a tetrahedron. In our project, we use Vietoris-Rips complexes 
and Flagser complexes, where each simplicial complexes corresponds to a subset of points whose supremum of 
distances between their pairs (diameter) is less than a given threshold, to construct abstract simplicial complexes 
from a set of points. The persistence diagram summarises information about the appearance and disappearance of 
topological features. VR complexes and Flagser complexes were used to form the persistence diagrams in the paper, 
where respectively correspond undirected graph and directed graph.  

Here we will introduce the mathematic principle of the procedure and how to get persistent diagram (PD) from 
Vietoris-Rips complexes and Flagser complexes [11]. 

In a given dimension 𝑑𝑑, if there is an inclusion of one simplicial complex to another i: 𝐾𝐾1  ⊆  𝐾𝐾2, then an 
inclusion map will exist on the d-chains 𝑖𝑖 ∶  𝐶𝐶𝑑𝑑(𝐾𝐾1)  →  𝐶𝐶𝑑𝑑(𝐾𝐾2) when recognizing small complex in any chain as 
one in the larger chain. And this can be extended to a map on homology 𝑖𝑖 ∶  𝐻𝐻𝑑𝑑(𝐾𝐾1)  →  𝐻𝐻𝑑𝑑(𝐾𝐾2) by sending [a] ∈ 
𝐻𝐻𝑑𝑑(𝐾𝐾1) to the class in 𝐻𝐻𝑑𝑑(𝐾𝐾2) with the same representative. The persistent homology procedure can be defined as 
follow: 

Firstly, we will give a filtration: 
𝐾𝐾1 ⊆ 𝐾𝐾2 … ⊆ 𝐾𝐾𝑁𝑁 (5) 

Then a sequence of maps on the homology will be obtained as:  
𝐻𝐻𝑑𝑑(𝐾𝐾1)→ 𝐻𝐻𝑑𝑑(𝐾𝐾2)→ ... →𝐻𝐻𝑑𝑑(𝐾𝐾𝑁𝑁) (6) 

The definitions of birth and death are defined as: If [𝛼𝛼] does not occur in the homology map 𝐻𝐻𝑑𝑑(𝐾𝐾𝑖𝑖−1) 
→𝐻𝐻𝑑𝑑(𝐾𝐾𝑖𝑖), the class [𝛼𝛼] ∈ 𝐻𝐻𝑑𝑑(𝐾𝐾𝑖𝑖) will be defined to be born at 𝑖𝑖. The class dies at 𝑗𝑗 if [𝛼𝛼] ≠ 0 in 𝐻𝐻𝑑𝑑(𝐾𝐾𝑗𝑗−1)  but 
[𝛼𝛼] = 0 in 𝐻𝐻𝑑𝑑(𝐾𝐾𝑗𝑗). 

PDs can be constructed to show the process of persistent homology after this definition is given. In a persistent 
diagram, each off-diagonal points 𝐷𝐷 = {(𝑏𝑏1, 𝑑𝑑1), . . . , (𝑏𝑏𝑘𝑘, 𝑑𝑑𝑘𝑘}, 𝑏𝑏𝑖𝑖 𝑎𝑎𝑎𝑎𝑎𝑎 𝑑𝑑𝑖𝑖 represents that the homology is born at 𝑖𝑖 
and dies at 𝑗𝑗. The farther a point is from the diagonal, the longer time the class persists in the filtration and the 
stronger feature will be. The lifetime or persistence of a point 𝑋𝑋 =  (𝑏𝑏, 𝑑𝑑) in a persistence diagram 𝐷𝐷 is given by 
pers (𝑥𝑥) =  |𝑏𝑏 −  𝑑𝑑|. Fig.3 plotted PHs of the sample movement 1 for subject 1 with the two brain network 
respectively. Each point represents a feature, whose x-axis is the filtering level at which the feature appears, and 
the y-axis is the filtering level where the feature disappears. 
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Fig.3: Persistent diagrams obtained from persistent diagrams of the movement 1 from subject 1  

 
1. Persistent landscape 

The persistent landscape is constructed by a series of persistent real-valued piecewise linear functions defined in 
the coordinates of the persistent diagram [12]. The piecewise function 𝑓𝑓(𝑏𝑏,𝑑𝑑) for each point (𝑏𝑏, 𝑑𝑑)  in the PD is defined. 
To quantify PLs, the distance of between a set of persistence landscapes is defined: 

∥ 𝜆𝜆 − 𝜆𝜆′ ∥∞ = 𝑠𝑠𝑠𝑠𝑠𝑠𝑘𝑘,𝑡𝑡 ∣ 𝜆𝜆𝑘𝑘(𝑡𝑡) − 𝜆𝜆𝑘𝑘′(𝑡𝑡) ∣ where  𝜆𝜆𝑘𝑘(𝑡𝑡) = 𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚{𝑓𝑓(𝑏𝑏,𝑑𝑑)(𝑡𝑡)} (9) 
where 𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚 represents the kth largest element. The persistent landscape is a sequence of functions where λk is 

called kth persistent landscape function. Fig.4 plotted PLs of the sample M1 for subject 1 with the two brain network 
respectively. 

 
Fig.4: Persistent landscapes obtained from persistent diagrams of the movement 1 from subject 1  

 
2. Persistent kernel function 

From the topological perspective, various PH-based kernels have been also proposed [13]. In this paper, we apply 
the most frequently used kernel, Persistent Scale Space Kernel (PSSK), and Persistence Sliced Wasserstein Kernel 
(PSWK). The formulae for these two kernels are presented in the classification section below [13]. PSSK is defined as 
the inner product between the solutions of the heat diffusion equation, both originating from initial Dirac impulses 
positioned at the locations corresponding to the points of the persistent diagrams [14]; and for PSWK, which is one new 
kernel defined with Sliced Wasserstein metric. The metric slice the plane with lines, where the lines are to extrapolate 
the measures and integrate these distances over all possible lines [15]. 

Persistence diagrams have been proven useful in PSSK, as the first persistent homology related kernel function, but 
in practice, when using grid search, the bandwidth of the PSWK is easier to tune than the parameters of the PSSK [15]. 
So, we will take both kernels into account and we will find the one that is more suitable for our data. 

𝐾𝐾𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝐿𝐿𝑘𝑘 , 𝐿𝐿𝑘𝑘
′ , 𝜎𝜎) =

1
8𝜋𝜋𝜋𝜋

�  
𝑙𝑙𝚥𝚥
𝑘𝑘����⃗ ∈𝐿𝐿𝑘𝑘,𝑙𝑙𝚥𝚥′

𝑘𝑘�����⃗ ∈𝐿𝐿𝑘𝑘
′

𝑒𝑒−
∥𝑙𝑙𝚥𝚥

𝑘𝑘����⃗ −𝑙𝑙𝚥𝚥′
𝑘𝑘�����⃗ ∥2

8𝜎𝜎 − 𝑒𝑒−
∥𝑙𝑙𝚥𝚥

𝑘𝑘����⃗ −𝑙𝑙𝑗𝑗′
𝑘𝑘
¯

∥2

8𝜎𝜎  (10) 

Another PH-based kernel PSWK is defined by [15] 

𝐾𝐾𝑆𝑆𝑆𝑆(𝐷𝐷𝐷𝐷1, 𝐷𝐷𝐷𝐷2) ≝ 𝑒𝑒𝑒𝑒𝑒𝑒 (−
𝑆𝑆𝑆𝑆(𝐷𝐷𝐷𝐷1, 𝐷𝐷𝐷𝐷2)

2𝜎𝜎2 ) (11) 

where 𝐷𝐷𝐷𝐷1, 𝐷𝐷𝐷𝐷2 be two persistent diagrams  
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𝑆𝑆𝑆𝑆(𝐷𝐷𝐷𝐷1, 𝐷𝐷𝐷𝐷2) ≝
1

2𝜋𝜋
� 𝑤𝑤�𝜇𝜇1

𝜃𝜃+𝜇𝜇2∆
𝜃𝜃 , 𝜇𝜇2

𝜃𝜃 + 𝜇𝜇1∆
𝜃𝜃 � 𝑑𝑑𝑑𝑑

𝑆𝑆1
 (12) 

where  𝜇𝜇1
𝜃𝜃  = ∑ 𝛿𝛿𝜋𝜋𝜋𝜋(𝑝𝑝)𝑝𝑝∈𝐷𝐷𝐷𝐷1    𝑎𝑎𝑎𝑎𝑎𝑎  𝜇𝜇1∆

𝜃𝜃  = ∑ 𝛿𝛿𝜋𝜋𝜋𝜋◦𝜋𝜋∆(𝑝𝑝)𝑝𝑝∈𝐷𝐷𝐷𝐷1  
Following that, the results of PH were converted into PL and projected into higher dimensional space by kernel 

functions, that can be integrated into machine learning models support vector machine methods. The two parameters 
of models are 𝜎𝜎 and 𝐶𝐶 values. 𝐶𝐶 value is Penalty Coefficient of SVM model to get a better model for classification 
and finally choose the combination of two parameters with the highest accuracy. The key performance F1 score 
was used in evaluating classification models in the models, and for one run, the model randomly chose the 70% 
movements and train set, 30% movements as test set. And for each subject, we took 10 times run and calculated 
average as the final accuracy. Additionally, the accuracy presented by one-versus-one binary classification results 
with 3 types of motion conditions, 3 binary combinations.  

 
3. Results 

Multi-classification by the proposed model was performed to verify the feasibility of decoding coordinated 
directions of bimanual movements. For the accuracy result,  𝛼𝛼 = 0.05 was set in all significance test, and in all 
tables, classifier accuracy was presented as mean ± standard deviation (Std).  

Table 1 presented the subject-independent accuracies of classifying with two different brain network and three 
different transformation methods of PH. The peak accuracy of decoding bimanual movement directions reached 
72.48±1.07 by functional connectivity network with PSSK function. Moreover, from Table 1, the two brain 
networks have no evident difference in accuracy, and the three subjects also have no significant difference, which 
outcome aligns with our anticipated outcomes. 

And for the Table 2, blue color represents PL and orange color represents PSSK. Each accuracy presented as 
binary classification average percentage of the three subjects. the conclusion that movement 1 and movement 2 
have higher accuracy, which means that these two types of movement were more differentiated than the other 
groups. And the results of Table 2 also showed no significant difference between the results of the two brain 
networks. 

Table 1: Subject-independent Three Categories Classification with Brain Network. 

Subject No. 

Classification Accuracy (%) 
Functional Connectivity Network Effective Connectivity Network 

Persistent 
Landscape 

PSSK 
Function 

PSWK 
Function 

Persistent 
Landscape 

PSSK 
Function 

PSWK 
Function 

Subject 1 68.42±5.91 71.41±4.19 67.99±3.78 68.15±6.17 70.84±4.52 70.15±4.10 
Subject 2 65.61±5.23 73.95±4.86 65.75±3.69 63.79±4.52 72.64±3.14 61.66±5.82 
Subject 3 65.34±3.56 72.10±3.12 63.65±2.61 59.89±2.19 70.11±6.41 64.74±4.22 

Mean ± Std 66.05±1.39 72.48±1.07 65.80±1.77 63.94±3.37 71.20±1.06 65.52±3.51 
 

Table 2: One-to-one Movement Binary Classification with Brain Network. 
Functional M1 M2 M3 Effective M1 M2 M3 

M1  69.55±1.54 67.23±2.51 M1  68.14±2.61 65.75±1.84 
M2 73.19±2.01  62.64±1.68 M2 71.42±3.40  63.14±1.69 
M3 66.85±1.65 64.62±0.94  M3 68.62±2.08 62.74±2.14  
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Table 3: Result of real environment vs. virtual reality by functional connectivity network 

Subject                   
No. 

REAL ENVIRONMENT VIRTUAL REALITY 

Persistent 
Landscape 

PSSK 
Function 

PSWK 
Function 

Persistent 
Landscape 

PSSK 
Function 

PSWK 
Function 

Subject 1 68.42±5.91 71.41±4.19 67.99±3.78 67.41±5.57 74.78±4.49 66.71±4.14 
Subject 2 65.61±5.23 73.95±4.86 65.75±3.69 64.54±3.35 72.74±3.98 68.46±3.48 
Subject 3 65.34±3.56 72.10±3.12 63.65±2.61 68.72±2.14 70.54±2.56 69.75±5.14 

Mean±Std 66.05±1.39 72.48±1.07 65.80±1.77 66.89±1.75 72.69±1.73 68.31±1.25 
 
4. Discussion 

There are some possible reasons why the classification accuracy is not very high: 1) The current experimental 
paradigm design could make it challenging to distinguish the three bimanual movements. When performing the three 
types of bimanual movements, the brain activities may not differ significantly; 2) The number of participants in the 
experiment is relatively small, and individual differences among the subjects cannot be smoothed out. One subject only 
performs 150 movements, so these may not be sufficient for training in machine learning. 

To achieve the further improvement, the directions were planned for in the future. First, we could refine the 
experimental paradigm and explore a range of bimanual movement combinations, whose movements should be used to 
demonstrate the differences in brain activity by simplifying common bimanual coordination movements in daily life; 
moreover, the existing methods could be improved and that new ones be tried. With enough computing power, we would 
try embedded point-cloud methods instead of neural networks. In addition, it would be beneficial to explore other 
complex structures, such as α-complexes and weighted Rips, in the construction of PH; finally, increasing the sample 
size of the experiment would be beneficial and the inclusion of subjects from different age groups and genders will 
enhance the generalizability of the experiments. 

 
5. Conclusion 

The paper provides a preliminary investigation into experimental paradigms for bimanual coordination. In this 
paper, we focus on classifying and decoding bimanual movements using PH-based machine learning. We first designed 
experiment for bimanual movements and collected EEG data from three subjects in real environments. We completed 
preprocessing of EEG data, then used methods combinations of TDA and machine learning for classification and 
obtained corresponding accuracy. Firstly, we have constructed functional connectivity network and effective 
connectivity network. Then, we used Vietoris-Rips and Flagser complexes to conduct persistent diagrams to capture the 
feature of EEG data. Finally, the persistent landscapes and persistent kernels were input in SVM for classification. The 
method with the best performance is to combine functional connectivity, PD and SVM with PSSK kernels, and the 
accuracy is 72.48 ± 1.07% in the real environment. 
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