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Abstract - To develop robots to assist patients in the rehabilitation of upper limbs, research into bimanual coordination is imperative. 
The aim of our project is to obtain, decode, and compare electroencephalogram (EEG) signals of brain activities in bimanual movement 
coordination in real and virtual environments. The work included the development of a virtual gaming environment for users to perform 
three bimanual coordination tasks. EEG signals were collected, preprocessed, and analyzed from three subjects performing these activities 
in the virtual environment. Time-Frequency Analysis (TFA) was used to extract features in five channels (C1, C2, C3, C4, and Cz). EEG 
signals were also collected from the same users performing similar activities in the real environment. Comparing the TFA results between 
the virtual and real environments, significant differences were found in the two subjects. Machine learning techniques were also applied 
to classify the three motions in the virtual and real environments based on the EEG signals collected from 64 channels. Results show that 
the highest average classification accuracies of 72.9 ± 9.37% and 70.5 ± 6.11% in real and virtual environments were obtained in three 
bimanual coordination movements using the EEGNet model. The results indicate the feasibility of decoding the bimanual coordination 
movements on EEG, and the impact of the virtual environment on EEG signals in time and frequency domains. In the future, we would 
increase the number of subjects and improve the immersion quality of our virtual environment. 
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1. Introduction 

Musculoskeletal disabilities are severely incapacitating and disrupt everyday activities. The World Health Organization 
(WHO) reports that around 1.71 billion individuals globally suffer from musculoskeletal ailments. Notable diseases 
impacting musculoskeletal functionality include chronic joint pain, arthritis, Parkinson's disease, and cerebral palsy [1]. Most 
musculoskeletal impairments experience upper extremity weakness, which prevents them from performing everyday 
activities with their hands [2]. It is anticipated that robots can be developed to assist physically challenged patients in 
performing these activities and to help in their rehabilitation. However, understanding the brain coordination of these 
bimanual movements is imperative for the development of the robots. According to Maiseli et al., brain-computer interfaces 
can accelerate the restoration of limb movement ability in disabled people, improving the condition of musculoskeletal 
impairments [3]. Electroencephalogram (EEG) is a non-invasive medical procedure used to record electrical activity 
generated in the human brain, which is one of the most frequently used methods of BCI. The principle of this technology is 
that nerve cells in the brain (neurons) communicate via electrical impulses, creating a pattern of electrical activity that an 
EEG monitor can trace [4]. 

Recent studies have investigated the use of virtual reality (VR) as a healthcare intervention method. For instance, in the 
research conducted by Jack, VR is suggested as a rehabilitative tool for stroke patients [5]; Gokeler focused on the effect of 
the virtual environment on the knee patterns of ACL injury patients, all of them get positive recovery in knee movement [6]; 
Blanco-Morab applied VR games and EEG to associate post-stroke recovery training of upper limb with bimanual motions. 
VR is applied as an environmental carrier, linking EEG and hand movements [7]. VR technology can provide multiple spaces 
and associated environmental elements compared to the real environment in a hospital [8]. Researchers can create scenarios 
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that are complex or difficult to reproduce in daily life using VR modelling. Switching between the scenarios makes it 
possible to explore how the brain responds in different mental and physiological states, thus revealing specific EEG 
patterns. 

In summary, effective analysis of bimanual coordination from EEG signals can play an important role in 
development of robots and rehabilitation purposes, while the VR can help to improve the outcome of rehabilitation 
therapy. Hence, the aim of the project is to design EEG paradigms based on real life, obtain and decode signals of EEG 
in bimanual movements in both real and virtual environment. We plan to design the motor execution experiments to 
collect and analyse EEG data during bimanual coordination tasks to gain deeper insights into this process. To achieve 
this, we will establish a VR system to simulate specified bimanual coordination movements and collect EEG data within 
this system. After EEG data acquisition, we will preprocess the EEG data using independent component analysis (ICA) 
and TFA.  

The paper is organized as follows: Section 2 represents the experimental paradigms, participants' information virtual 
environment design, and data processing including TFA and deep learning models; Section 3 discusses the experimental 
results from TFA and classification performance; Section 4 summarizes all the conclusions. 

 
2. Method 
2.1. Experimental Setup 

Three right-handed healthy subjects participated in the experiments. All of them are male, aged between 20-22. All 
participants signed informed consent.  

To determine paradigms for the bimanual coordinate and design tasks of movements, we could also draw inspiration 
from previous experimental designs [9]. Whether it is the task of opening a drawer or the coordinated movements of 
both hands, it can be basically summarized as the movement of both hands in the vertical and horizontal directions. This 
is because most bimanual movements can be simplified as the coordination movements of the two hands in these two 
directions. For the design of the experimental process, we aimed to make experiments effective and concise. We divided 
the common bimanual movements into three kinds and simplified them, and designed experiments based on these three 
types of movements. The design included three types of bimanual coordination: 1. horizontal movement; 2. vertical 
movement; 3. horizontal + vertical movement. The three movements are shown in the below diagram. 

 

 
Fig. 1: Experimental setup (a) Illustration of three movements(b) Experimental process of bimanual coordination (on-screen 

guidance display) (c) Illustration of experiment process. 

The establishment of virtual environment (VE) was based on the above designed bimanual coordination tasks 
in real environment. We tried to create a daily atmosphere to comfort the subjects and heighten their engagement. As 
a result, the virtual environment is designed to replicate the interior of a kitchen, which is shown in Fig.2 (a). The 
experiment takes place in the VE that was custom-made using Unity3D (editor version: 2022.3.3f1c1) and SteamVR 
Unity Plugin (version 2.7.3). The scenery is an open source in the asset store of unity3d, featuring a total of 78 models 



 
 

 
 

 
 

 
ICMIE 154-3 

including electrical appliances, kitchen tools, vases, pictures, glasses, among others, all available as prefabs. Additionally, 
the documentation offers various materials to customize the style of the furniture as desired.  

Similar to the real environment experiments, the virtual environment uses stimulus to guide users on the bimanual 
activities. Arrows indicating movement directions are randomly presented in the centre of the virtual room (Fig.2 (b)). 
Participants perform these motions and interact with the virtual environment through a hand-held controller. Upon touching 
the button on the controller, visual guidance through colour changes, as well as tactile feedback through the controller ensure 
that the movements are properly executed. 

       

 
Fig. 2: (a) Outline of virtual environment; (b) VR tasks. 

2.2. Data Acquisition 
SynAmps 2 amplifier (NeuroScan, Charlotte, NC, USA) was applied to record the EEGs using an elastic cap carrying 

66 Ag/AgCl electrodes. The electrodes were placed on the scalp at locations according to the extended international 10/20 
system. Electrical activities from the right and left mastoids were recorded. The vertical electrooculogram (VEOG)was 
recorded by bipolar channels placed above and below the left eye. The ground electrode was attached to AFz. All the 
electrodes were referenced to the tip of the nose. The impedances between any electrode and the reference electrode were 
kept at less than 5 kΩ. Continuous EEG data (0.03-100 Hz) were recorded and digitized with a 24-bit resolution with a 
sampling rate of 500 Hz. 

 
2.3. Data Preprocessing 

Firstly, the epoch of the actual hand movement starting from the -s to the 4s in each trial for a total of 5s was extracted 
from the EEG for analysis [10]. Then complete the re-reference according to the reference channels. With re-referencing, 
the reference channel settings can be changed to reduce or eliminate the effect of certain electrode configurations on the EEG 
signal [10]. Next, the EEG signal was filtered from 0.1 to 30 Hz [12]. 

ICA was used to remove artifacts, including eye movements, muscle activities, and external noise, thus isolating more 
accurate brain signals. The efficiency of ICA is influenced by several factors, such as the number of EEG channels, the 
experimental environment (whether stationary or mobile), and the settings of high-pass filters used in preprocessing. By 
enhancing the signal-to-noise ratio in specific components, ICA significantly improves the quality of EEG data, making it 
more suitable for detailed analysis. Furthermore, ICA's ability to distinguish between neural and non-neural signals plays a 
critical role in the reliability of EEG interpretations, especially in complex brain research and clinical diagnostics [13]. 

We implemented all the preprocessing procedures in EEGLAB, an open-source toolbox of MATLAB [14]. 
 

2.4. Decoding Model 
2.4.1 Deep and Shallow ConvNet 

Deep ConvNet comprises four convolutional blocks, beginning with a specially designed first block tailored for EEG 
input processing, followed by three conventional blocks and a layer with dense softmax classification. The first convolutional 
block is segmented into two layers to handle the high number of input channels. The first layer applied a temporal convolution 
across each filter, while the second layer conducted spatial filtering across all electrode pair combinations. The absence of 
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an activation function between these layers allows them to potentially be merged into a single layer. However, 
employing two distinct layers offers implicit regularization by separating the linear transformation into temporal and 
spatial components [15]. The following three blocks are conventionally used to capture the remaining features and 
reduce the redundant information. The illustration of Deep ConvNet architecture is shown in Fig.3 and the sizes of 
filter in temporal convolution and spatial filtering is set as (1,10) and (65,25).  

 
Fig. 3: The visualization of Deep ConvNet architecture 

For a deeper exploration of the information in frequency band power, a shallow ConvNet is designed, drawing 
inspiration from the Filter Bank Common Spatial Patterns (FBCSP) algorithm [16]. The first two layers of this 
ConvNet comprise a temporal convolution coupled with a spatial filter. Unlike the deep ConvNet, shallow ConvNet 
employs a larger kernel size in the temporal convolution, enabling a larger span of transformations in this layer. After 
the two layers, a squaring nonlinearity, a mean pooling layer and a logarithmic activation function followed. Those 
two architectures have been evaluated against the conventional algorithms (FBCSP) in motor decoding from EEG 
[15]. With appropriate design choices, deep and shallow ConvNets are able to reach or surpass the accuracies of 
FBCSP and could further improved by hyperparameter optimizations. 

 
2.4.2 EEGNet 

The EEGNet architecture comprises of two main blocks. Full visualization and description of the architecture are 
illustrated in Table 1 and Fig. 4. Table 1 shows the network structure and training parameters for the EEGNet. In first 
block, it has two convolutional steps. First, 2D convolutional filters of size (1, 250) are utilized. The length of these filter 
is half the sampling rate of the data (500 Hz), enabling the capture of frequency information at 2 Hz and above [17]. The 
batch normalizations follow to optimize the output activations. Then a depthwise convolution layer of size (65, 1) is 
applied to learn a spatial filter. This step improves the learning of spatial filters corresponding to each temporal filter, 
while enhancing the extraction of frequency-specific spatial features [17]. Depth parameter D controls the number of 
spatial filters. 

To combine the features from the previous output, a separable convolution is used in block2. It consists of a 
depthwise convolution of size (1, 50), followed by F2 (1, 1) pointwise convolutions. The depthwise convolution 
summarizes the individual feature maps in time and the pointwise convolution capture new features by mixing the 
resulting output channels of feature maps [18]. This step is beneficial for EEG signals since distinct feature maps can 
encode data across various temporal scales of information. 
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Fig. 4: Illustration of the EEGNet architecture. Conv2D is applied as a temporal layer to learn the frequency features, Depthwise 

convolution is followed to learn the spatial features. Then separable convolution summarizes the temporal features for each map [17] 

Table 1: The network structure and training parameters of EEGNet. T is the number of sample points, C is the number of EEG 
channels, F_1 is the number of temporal filters and F_2 is the pointwise filters 

Block Layer Filter number Kernel size Output Activation Options 

1 

Input   (C, T)   
Reshape   (1, C, T)   
Conv2D 𝐹𝐹1 (1,250) (𝐹𝐹1, C, T) Linear Mode = same 

BatchNorm   (𝐹𝐹1, C, T)   
DepthwiseConv2D 𝐷𝐷 ∗ 𝐹𝐹1 (65,1) (D ∗ 𝐹𝐹1, C, T) Linear Mode = valid 

BatchNorm   (D ∗ 𝐹𝐹1, C, T)   
Activation   (D ∗ 𝐹𝐹1, C, T)   

AveragePool2D  (1,5) (D ∗ 𝐹𝐹1, C, T//5) ELU  
Dropout   (D ∗ 𝐹𝐹1, C, T//5)  p = 0.5 

2 

SeparableConv2D 𝐹𝐹2 (1,50) (𝐹𝐹2,𝐶𝐶,𝑇𝑇//5) Linear Mode = same 

BatchNorm  (𝐹𝐹2,𝐶𝐶,𝑇𝑇//5)   
Activation   (𝐹𝐹2,𝐶𝐶,𝑇𝑇//5) ELU  

AveragePool2D  (1,5) (𝐹𝐹2,𝐶𝐶,𝑇𝑇//25)   
Dropout   (𝐹𝐹2,𝐶𝐶,𝑇𝑇//25)  p = 0.5 
Flatten   (𝐹𝐹2,𝐶𝐶,𝑇𝑇//25)   

Classifier Dense    Softmax Max norm=0.25 
 
2.4.3 Training Strategy 

EEG signals collected in the virtual environment by ME and the real environment by IE were processed into a uniform 
size (150,2500,65). Before we applied the proposed methods, the input data were reshaped. Three-dimensional data of form 
(Ns, L, Nc) was transformed into four dimensions (1, Ns, T, C), where Ns is the number of input samples and T is the number 
of sample points and Nc is the number of EEG channels. To ensure the reliability of the model performance, we applied the 
10-fold cross-validation to split the dataset into 10 groups. Each group would be used for testing and the remaining nine 
groups were used as training sets. Therefore, 10 models would be trained for one time and the average accuracy of the models 
represents the performance of the algorithm. We applied the adaptive moment estimation (Adam) as the optimizer and 
categorical cross-entropy for multi-classification loss function. To optimize the models, we set a grid of hyperparameters 
such as epoch in [100,150,200,250,300], number of filters (from 4 to 19) and batch size in [8,16,32,64]. The settings of 
hyperparameters are chosen based on the highest average accuracy. 

 
3. Results 
3.1 Time-frequency Presentation 

For TFA, we primarily analyzed the results of data from the C1, C2, C3, C4, and Cz channels. Since the results of the 
five channels were similar, only the results of the C1 channel are presented [19] [20]. The results in the time domain showed 
that the peak of Movement 1 is often significantly lower than the other two movements. On this basis, we used the Morlet 
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wavelet transform to calculate the time-frequency representation for further analysis of the results. Meanwhile, we 
plotted the time-frequency diagram based on this result which is shown in Fig.5. 

 
Fig. 5: Average Amplitude vs Time diagram of C1 channel under three different movements conditions 

Based on these time-frequency diagrams, we can find that with five of our selected channels, C1, C2, C3, C4, and Cz, 
the three types of bimanual coordination movements we have designed show more pronounced energy concentrations mainly 
in the frequency domain from 2 to 12 Hz, and that some of the channels will have energy concentrations below 2 Hz. 
Therefore, from the results of analysing the time-frequency diagrams of the five channels of data, C1, C2, C3, C4, and Cz, 
it is difficult to distinguish between the three kinds of movements just by these energy concentrations in experiments 
conducted in a VR environment. Time-frequency diagrams are difficult to use as a decisive basis for distinguishing between 
the three movements, because it is difficult to directly identify the differences and distinctions between the three based on 
the images. 
 

 
Fig. 6: Time-frequency diagrams of C1channels for three movements. From left to right column, (a) movement 1, (b) movement 2, and 

(c) movement 3. 

3.2 Decoding Performance 
Furthermore, we compared the performance of the three deep learning methods--EEGNet, Shallow convolution network 

and deep convolution network. All models are trained in the same way. The results of three subjects are shown in Table 2. It 
could be seen that EEGNet performs better than other two algorithms of all subjects. (a) represents the visualization of three 
algorithms in Subject 2. Besides, we applied t-test to determine whether the accuracies have significant difference between 
the virtual and real environment. We found that subjects get higher accuracy in virtual environment in EEGNet except Subject 
3, which supports the results in Table 2. The visualization of the classification accuracies is shown in Fig. 7(b). Hence, the 
classification accuracies in virtual environment are comparable to the real environment. 

Table 2: Accuracies of classification for three movements using three algorithms 
Subject Environment EEGNet ShallowConvNet DeepConvNet 

Subject 1 VR 0.87 0.62 0.75 
Real 0.71 0.48 0.54 

Subject 2 VR 0.83 0.58 0.87 
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Real 0.72 0.43 0.46 

Subject 3 VR 0.58 0.38 0.50 
Real 0.71 0.60 0.60 

 

 
Fig. 7: (a) Classification Results of Three Algorithms (Subject 2) (b) Classification Results of Three Subjects in Real and Virtual 

Environment using EEGNet 

4. Conclusion 
Bimanual coordination is significantly important in various aspects of daily life. In our project, we collected the EEG 

data during the experiment of three types of bimanual coordination movements including: horizontal movement, vertical + 
horizontal movement, and vertical movement using experiments in the virtual environment. The results were compared with 
similar experiments with subjects in the real environment conducted by IE students. 

Based on the results of TFA time-amplitude diagram, motion 1 is more likely to be distinguished from the other two 
motions for two subjects. The peak voltage of motion1 is lower in Subject 1 and Subject 2. Our results correspond to the IE 
report that the binary classification of Motion 1 and Motion 2 is the highest in Subject 1 and Subject 2, which means the 
differences between these two types of motion are the biggest. The result of the TFA is that under the five channels C1, C2, 
C3, C4, and Cz, only Motion 1 and 2 of Subject 1 can be seen to differ by the time-frequency diagrams in the REAL 
environment. By significance analysis, only the three movements of Subject 1 in the VR environment showed more 
significant differences. However, the significance of the differences between the three movements of Subject 1 and Subject 
2 in the VR environment was higher than that in the REAL environment. 

The results of EEG decoding show that the EEG signals of the three movements can be decoded by the three deep 
learning algorithms and the highest average classification accuracies in subjects are 72.9 ± 9.37% and 70.5 ± 6.11% in real 
and virtual environments. We compare the decoding performances in real and virtual environments. Average accuracies in 
the virtual environment are higher than that in the real environment (except Subject 3), which shows that the decoding results 
in virtual environment are comparable to the real environment. In addition, the performances of EEGNet model are more 
successful than the other two models, Deep and shallow ConvNet. 

However, our work still has several limitations. First, the number of subjects was too small and the amount of data was 
small. Since the experiment had only three subjects and all three subjects were healthy males in their 20s, the conclusions 
drawn may not be generalizable. Considering that the goal of this project was to be used for exercise rehabilitation, there is 
no data from patients to compare with data from healthy subjects.  

Second, the EEG cap used during EEG data acquisition has 65 channels. By reading the literature, we focused on the 
data of 5 channels, C1, C2, C3, C4, and Cz. Due to time constraints, we did not analyze the remaining channels in detail. 
There may exist other channels that have a more significant effect on the bimanual coordination movement, or can better 
respond to the results of two-handed movement.  

Third, the designed virtual environment is monotonous and not immersive. A great virtual environment has no 
distinction from the real environment and can make users immersive. However, the VR headset is unused during our 
experiments. The reason is that the data quality on EEG cap will be affected by the headset while wearing both of them. 
Meanwhile, long time of wearing the headset will cause dizziness and make subjects uncomfortable. In addition, the virtual 
scenario is too simple. Different scenarios might affect the brain activity and change the patterns in EEG signals. 
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