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Abstract - In this work, we propose a model of liquid-vapor phase transition allowing the appearance of metastable states contained in 

the reduced equation of van der Waals. Following the Gibbs formalism, we assume that the entropy of the fluid is described by its mass 

M, its volume V and its energy E. Using the second principle of thermodynamics, we construct a maximization problem under 

constraints of the system entropy. Then, thanks to the Caratheodory’s theorem, we get a mathematical proof for the Gibbs phase rule. 

This approach allows us to recover all states of equilibrium: Maxwell’s equilibrium, pure stable and metastable states, by studying the 

maximization problem constructed above. 
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1. Introduction 
We propose a mathematical formulation for a single liquid or vapor fluid allowing the appearance of all kinds of 

equilibria. Usually, the strategy is to use a  diphasic model where each phase is described by a concave entropy ([1],[2]). 

From the second principle of thermodynamics, the entropy of the mixture model is the maximum of the total entropy and it 

corresponds to the concave hull of partial entropies [1]. Here we propose a model as a maximization problem under 

constraints  where each phase is covering by the same non concave entropy like the van der Waals EoS. Using the concepts 

of convex analysis we prove that the number of phases is limited to 2. Then, the study of this optimization problem under 

constraints allows to characterize the equilibria for the thermodynamic system. 
 

2. Thermodynamics and Optimization Problem 
The goal of this section is to describe the liquid-vapor phase transition from a thermodynamical point of view. 

 

2.1. Description of a Single Fluid 
We consider a fluid of mass 𝑀 ≥ 0, covering a volume 𝑉 ≥ 0 and characterized by its energy 𝐸 ≥ 0. Using the 

Gibbs’ formalism (see [3], [4]) we define the extensive entropy S of the fluid as a function of 𝑀, 𝑉and 𝐸: 
 

 𝑆: (𝑀, 𝑉, 𝐸) → 𝑆(𝑀, 𝑉, 𝐸) (1) 
 

All the above quantities are said extensive quantities: if the system is doubled, then its mass, volume, energy and 

entropy also double. In the mathematical sense, any extensive quantity is said positively homogeneous of degree 1(𝑃𝐻1) 

verifying the following relation: 

 

 ∀𝜆 > 0, 𝑆(𝜆𝑀, 𝜆𝑉, 𝜆𝐸) = 𝜆𝑆(𝑀, 𝑉, 𝐸) (2) 
 

Moreover, we assume without loss of generality that the entropy function 𝑆 belongs to 𝐶2(ℝ × ℝ × ℝ). It allows to 

introduce intensive quantities, that are positively homogeneous functions of degree 0(𝑃𝐻0). Thus, we commonly define 

the pressure 𝑝, the temperature 𝑇and the chemical potential 𝜇 as following [6]: 
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We recall the fact that all these quantities 𝑝, 𝑇and 𝜇 are defined only when the system is at equilibrium. Furthermore, 

as 𝑆 is considered to be a thermodynamic potential then it must be a total differential, so the intensive quantities 

𝑝, 𝑇, and 𝜇 must verify the following classical thermodynamic extensive Gibbs’ relation: 
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−𝜇

𝑇
𝑑𝑀 +

𝑃

𝑇
𝑑𝑉 +

1

𝑇
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Since 𝑆 is a 𝑃𝐻1 function, it verifies the Euler relation (see [6]), which gives 

 

 
𝑆(𝑀, 𝑉, 𝐸) =
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Dividing  the equation (5) by 𝑀, then we can  define the intensive entropy, denoted 𝑠,  for a fixed mass 𝑀 > 0: 
 

 
𝑠(τ, 𝑒) =

−μ(τ, 𝑒)
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𝑀
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 (6) 

 

We then recover the intensive Gibbs relation: 

 

 𝑇𝑑𝑠 = 𝑑𝑒 + 𝑝𝑑τ (7) 
 

In this work we are interested to a non necessary concave nor convex entropy function s that verifies   

 

 𝜕2𝑠

𝜕𝑒2
< 0 (8) 

                  

An example of such Equation of State (EoS) is the van der Waals EoS with the entropy function 

 

 𝑠(𝜏, 𝑒) = 𝐶𝑣ln(𝑎 𝜏⁄ + 𝑒) + 𝑅ln(𝜏 − 𝑏) + 𝑠0 (9) 
 

where 𝑅 is the universal constant of gas, 𝐶𝑣 the calorific constant at constant volume, 𝑠0 the entropy of reference, 

𝑎 and 𝑏 are the two constants of van der Waals EoS depending of each gas [3, 5]. 

 

2.2. Description of the Phase Transition 
In this part, we want to describe the the formalism describing a phase transition with an appropriate EoS. We adopt the 

same approach used in [6]. We consider a fluid presented under I subsystems where each subsystem 𝑖, for 𝑖 = 1, . . . , 𝐼, is 

characterized by its mass 𝑀𝑖 ≥ 0, its volume 𝑉𝑖 ≥ 0 and its energy 𝐸𝑖 ≥ 0. Moreover, we assume that each subsystem 

 𝑖 follows the same non concave entropy 𝑆(𝑀𝑖, 𝑉𝑖, 𝐸𝑖). In our work, we always preserve the principles of mass 

conservation, and the conservation of energy. Then the mass and the energy of the complete system are: 

 

 

 

(10) 
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Furthermore, we suppose that all the subsystems are immiscible, so that the total volume is 

 

 

 

(11) 

 

Out of thermodynamic equilibrium, the entropy of the system is the sum of the partial entropies of each subsystem: 

 

 

 

(12) 

 

For fixed mass 𝑀, volume  𝑉 and energy 𝐸, the thermodynamic equilibrium states is the maximum of the entropy 

mixture according to the second principle of thermodynamics. This corresponds to determine the solutions of the following 

maximization problem: 

 

 

 

(13) 

 

under the constraints 

 

 

 
(14) 

 

We denote that  𝐼 is also a  parameter of  the optimisation problem under constraints (13)-(14). 

In the  sequel, we denote 𝜑𝑖 = 𝑀𝑖 𝑀⁄ ∈ [0,1] the mass fraction, 𝜏𝑖 = 𝑉𝑖 𝑀𝑖⁄ ≥ 0 the specific volume and the specific 

energy of the phase 𝑖 = 1, . . 𝐼. Then the maximization problem (13) can be written as 

 

 

 

(15) 

 

under the constraints 
 

 

 

(16) 

 

3. Phase Rule and Equilibrium States 

    The aim of this section is to show the maximal number of phases which can be reached at the thermodynamic 

equilibrium and then to compare this result with the physical rule namely the Gibbs phase rule. The last step is to describe  

the equilibria of the thermodynamic system by analysing the previous maximization problem. 

 

3.1. The Phase Rule 
We recall that 𝐼 is an unknown of the maximization problem (13)-(14), and that indicates  the number of phases 

potentially present at equilibrium. So in order to know the value of the number 𝐼,we refer to some concepts of convex 

analysis, in particular according to the Caratheodory’s theorem (please see [7], [8] for detailed proofs), we have 𝐼 ≤ 3.  
This means that at the most three phases remain. This result is in total agreement with the Gibbs phase rule (see [9]). In this 

work, we prove by the next theorem  that  the case 𝐼 = 3 is not reached. 
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Theorem 1. Consider the maximization-problem (15)-(16), and assume that the entropy function sverifies the 

inequality (8).  

 

 Then 𝐼 < 3 (17) 
 

As a consequence of Theorem 1, we notice that  the van der Waals EoS,  given as an example in this work,  allows us  only 

the phase change between  liquid-vapor. 

 

3.2. Characterization of the Equilibria 
According to the Theorem 1 we consider in the sequel 𝐼 = 2 and denote the phase 𝐼 by index 𝑖 = 1,2.  To ensure that 

the mass fractions 𝜑𝑖 remain in [0,1] for 𝑖 = 1,2, we assume that the specific volumes 𝜏, 𝜏1,𝜏2 and the specific energies 

𝑒, 𝑒1, 𝑒2 satisfy:  0 < 𝜏1 ≤ 𝜏 ≤ 𝜏2;    𝜏1 < 𝜏2, 0 < 𝑒1 ≤ 𝑒 ≤ 𝑒2;    𝑒1 < 𝑒2. (𝐻1) 

Using the Lagrange multipliers  associate to the constraints (16) we get the equilibrium states which maximize the 

mixture entropy given by the maximization problem (15). 
Proposition 2. Under hypothesis (𝐻1), the equilibrium states are 

1. Pure liquid or gaseous states: 𝜑1 = 0(resp.𝜑2 = 0), with 𝜏2 = 𝜏,   𝜏1 < 𝜏  arbitrary and  𝑒2 = 𝑒,   𝑒1 < 𝑒  arbitrary 

(resp.𝜏1 = 𝜏,   𝜏2 > 𝜏  arbitrary and 𝑒1 = 𝑒,    𝑒2 > 𝑒  arbitrary). 

2. Coexistence states:  𝜑1𝜑2 ≠ 0, then (𝐻2) holds with (𝜏1,𝜏2,𝑒1,𝑒2) satisfying 

 

 𝑝(𝜏1, 𝑒1) = 𝑝 (𝜏2, 𝑒2), 𝜇 (𝜏1, 𝑒1) = 𝜇(𝜏2, 𝑒2), 𝑇(𝜏1, 𝑒1) = 𝑇(𝜏2, 𝑒2) (18) 
 

Thus, at the thermodynamic equilibrium, when the two phases are present, the system is characterized by the equality of 

pressures, chemical potentials and temperatures.                                                                                                                                                                                                                                                                                                                                                         
            

4. Conclusion 
In this work, we presented a  mathematical reason for the Gibbs phase rule based on convex analysis and we present 

the reason on which an EoS like the van der Waals EoS for example cannot be used to describe the phase transition 

between more than two phases. It will be interesting  firstly to create a dynamical model allowing the capture of the 

equilibrium states. Another perspective is to use the latter as a relaxation term to the equilibrium for the Euler equations 

authorizing the appearance of the phase change as it is done in [6]. 
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