Proceedings of the International Conference on Mining, Material and Metallurgical Engineering Prague, Czech Republic, August 11-12, 2014 Paper No. 73

# Accompanying Elements in Sphalerite in Pyrometallurgical Process of Zinc and Lead Production

## Katarzyna Nowińska, Zdzisław Adamczyk

Institute of Applied Geology, Silesian University of Technology Akademicka 2, 44- 100 Gliwice, Poland katarzyna.nowinska@polsl.pl; zdzislaw.adamczyk@polsl.pl

#### Edyta Melaniuk-Wolny

Department of Air Protection, Silesian University of Technology Akademicka 2, 44- 100 Gliwice, Poland edyta.melaniuk-wolny@polsl.pl

**Abstract** - The primary raw materials used in the Imperial Smelting Process (ISP) for zinc and lead production are Zn and Pb concentrates. Dust generated in the course of ISP is recycled as secondary raw material. The examined samples, taken from particular technological sections (Sinter Plant, Shaft Furnace Unit, Lead Refining Plant) showed presence of sphalerite grains. The identified sphalerite grains indicate the presence of Pb sulphides, Fe sulphides, Cd sulphide, Fe and Zn oxides, as well as accompanying elements such as Ca, Mn, Cu, As, Se, Ag, Sn and Sb. The tests performed have demonstrated the differentiation in the content of the various accompanying elements in sphalerite grains present in both charge mixture as well as in dusts from various stages of the process. This differentiation may be an indication of migration of the accompanying elements from sphalerite grains to the products of the process (zinc, lead) or to waste products during the pyrometallurgical process.

Keywords: Pyrometallurgy, Zinc, Lead, Imperial Smelting Process, Sphalerite, Accompanying elements.

#### 1. Introduction

The "Miasteczko Śląskie" Zinc Smelting Plant is the only zinc and lead manufacturer in Europe that uses the ISP (Imperial Smelting Process) pyrometallurgical process.

The basic manufacturing line at Miasteczko Śląskie is concentrated around the shaft furnace and comprises (Pozzi M. Nowińska K, 2006; Zinc and lead... 2000)

1. Sinter Plant, which also includes the Sulphuric Acid Plant and the Cadmium Plant.

2. The Shaft Furnace Unit (reduction of zinc and lead compounds),

3. Lead Refining and Zinc Rectification Units (pyrometallurgical removal of contaminants from the shaft furnace products).

The charges for the pyrometallurgical zinc and lead production process comprise appropriately proportioned blends of primary raw materials (zinc blende and galena concentrates), intermediates (Zn-Pb sinter) and waste products (dust, dross, recycles, slag) and process products (crude zinc and crude lead) (Pozzi M. Nowińska K, 2006; Zinc and lead... 2000).

The primary raw materials, intermediates and waste products contain a number of accompanying elements.

In view of the growing interest in the winning of accompanying elements in the pyrometallurgical production of zinc and lead, it was reasonable to conduct research on the identification of the forms in which these elements occur at the various stages of the process. Moreover, the identification of the phase composition (main phases of Zn, Pb and accompanying elements) of dusts and slags forms grounds for determining the environmental impact of wastes from ISP.

The aim of this study was to demonstrate the diversity of the content of accompanying elements in sphalerite derived from the charge mixture and from dusts generated at the various stages of the pyrometallurgical production process of zinc and lead.

This research is a continuation of the research on the determination of the mineralogical composition of raw materials (charge mixture) and waste products (dust) of ISP to identify the main phases of Zn and Pb and admixtures of accompanying elements. Previous research allowed to determine the variability of the content of accompanying elements in galena grains contained in the charge mixture and dusts from ISP (Adamczyk Z., Nowińska K, Melaniuk- Wolny E.– in review).

### 2. Experimental Setup and Procedure

Test samples were taken from the charge mixture for the Sinter Plant (Raw Materials Stores 1 and 2, labelled as MS1 and MS2, respectively) and from dusts from the various process stages, including dust from fabric filters in the Sinter Plant (FT12 and FT 24, labelled as PR2 and PR3, respectively), dust from the grinding mill in the Sinter Plant (FT12R, labelled as PR5). Samples were used to make specimens for investigating the chemical composition within micro-areas using an X-ray microanalyser.

Chemical composition was determined by means of a Joel JCXA 733 X-ray microanalyser, equipped with an ISIS 300 energy-dispersive spectrometer from Oxford Instruments, to obtain information on qualitative and quantitative chemical composition of the microarea of the grain under study (analysis conditions: focused beam (diameter: 1-2  $\mu$ m, accelerating voltage 20 kV, current 3  $\cdot 10^{-9}$  A). Additionally, measurements of the mean chemical composition in a given microarea of fine-grained samples were made using a beam defocused to ca. 30  $\mu$ m or a beam scanning a maximum area of 30×30  $\mu$ m.

For every sample a series of microanalyses, comprising a dozen to several dozen measurements of the chemical composition of characteristic (prevailing) particles of dust, were performed in order to determine the dominating form of occurrence of individual elements, principally the main elements, and to associate the information obtained on chemical composition with the morphology of dust particles (Sokołowski J., Nosiła M., Pluta B. 1980). About 10 chemical composition measurements were made in the microarea of any single dust particle and the average was taken as the final result. The areas for analysis were selected on the basis of microscope scanning images obtained by detecting secondary electrons as well as backscattered electrons. Images obtained by detecting secondary electrons were used mainly for observing the morphology of dust particles, whereas the signals originating from backscattered electrons enabled, after appropriate processing, obtaining scanning images, the contrast of which depended exclusively on differences in chemical composition, which significantly facilitated the selection of points for analysis.

#### 3. Results

The tests performed have demonstrated the presence of sphalerite grains both in the charge mixture, as well as in dusts from ISP. These grains contain numerous accompanying elements.

#### 3.1. Sphalerite Grains in the Charge Mixture

The sphalerite grains present in the charge mixture always contain inclusions of other sulphides, including, among others, zinc sulphide and iron sulphides. This is evidenced by the chemical composition of sphalerite grains. The stoichiometric formula of this mineral indicates that sphalerite theoretically contains 67.09 wt% Zn and 32.91 wt% S. It may, however, contain admixtures of various accompanying elements, such as: Cd, In, Ge, Ga and Fe, Mn, Co, Cu, As (Furdyna 1988; Twardowski 1990; Pattrick et al. 1993, 1998; Axelsson and Rodushkin 2001; Lentz 2002; Nitta et al. 2008).

Yet, of the 19 sphalerite grains identified in the charge mixture (Tables 1 and 2), only one (MS-4) had its chemical composition close to stoichiometric. The other grains had either a large deficit of zinc content (ca. 59 wt% on the average) when sulphur fraction was close to stoichiometric in grains from MS1 (ca. 33 wt% on the average, Table 1), or a significant deficit of sulphur in grains from MS2 (ca. 29 wt% on the average, Table 2). Zinc deficit in the sphalerite structure is made up by accompanying elements. Some of these elements are so abundant, that they most probably form their own phases in the

form of inclusions in sphalerite grains. The highest concentrations of accompanying elements, among those studied, are those of iron (average for MS1 and MS2, 4.86 and 7.31 wt%, respectively) and lead (average for MS1 and MS2, 1.29 and 2.08 wt%, respectively). Iron in sphalerite grains in MS1 forms mainly sulphides (ca. 7 wt% on the average) and small amounts of oxides (1.52 wt% on the average), whereas iron in sphalerite grains in MS2 is predominantly in the form of oxides (more than 7 wt% on the average), with no occurrence of iron sulphides (Tables 1 and 2). Lead, on the other hand, occurs only in the form of sulphide in average amounts ranging from ca. 1.50 to ca. 2.50 wt%.

|                       |          |          | Analys   | sis (grain) | number   |          |          | Min     | Mar        | A       |
|-----------------------|----------|----------|----------|-------------|----------|----------|----------|---------|------------|---------|
| Element               | MS1-3    | MS1-4    | MS1-5    | MS1-6       | MS1-13   | MS1-16   | MS1-17   | IVIIII  | Max        | Average |
| S                     | 32.234   | 32.487   | 30.405   | 32.009      | 35.435   | 36.639   | 32.929   | 30.405  | 36.639     | 33.229  |
| Ca                    | 0.000    | 0.128    | 0.000    | 0.000       | 0.000    | 0.000    | 0.039    | 0.000   | 0.130      | 0.029   |
| Mn                    | 0.129    | 0.059    | 0.000    | 0.010       | 0.010    | 0.093    | 0.000    | 0.000   | 0.155      | 0.061   |
| Fe                    | 0.298    | 0.128    | 5.655    | 0.519       | 7.355    | 9.155    | 6.783    | 0.128   | 9.155      | 4.859   |
| Cu                    | 0.089    | 0.000    | 0.000    | 0.303       | 0.000    | 0.000    | 3.904    | 0.000   | 3.904      | 0.293   |
| Zn                    | 65.580   | 66.184   | 61.711   | 65.006      | 54.584   | 53.214   | 51.060   | 51.060  | 66.184     | 59.316  |
| As                    | 0.288    | 0.030    | 0.059    | 0.636       | 0.000    | 0.158    | 0.315    | 0.000   | 0.636      | 0.140   |
| Se                    | 0.000    | 0.010    | 0.030    | 0.000       | 0.129    | 0.000    | 0.128    | 0.000   | 0.129      | 0.022   |
| Ag                    | 0.109    | 0.030    | 0.000    | 0.157       | 0.248    | 0.102    | 0.227    | 0.000   | 0.264      | 0.089   |
| Cd                    | 0.447    | 0.345    | 0.337    | 0.235       | 0.436    | 0.167    | 0.148    | 0.000   | 0.447      | 0.197   |
| Sn                    | 0.119    | 0.000    | 0.317    | 0.039       | 0.000    | 0.297    | 3.953    | 0.000   | 3.953      | 0.361   |
| Sb                    | 0.199    | 0.000    | 0.584    | 0.000       | 0.297    | 0.000    | 0.000    | 0.000   | 0.584      | 0.119   |
| Pb                    | 0.507    | 0.601    | 0.901    | 1.087       | 1.507    | 0.176    | 0.513    | 0.000   | 7.592      | 1.285   |
| Total                 | 100.0000 | 100.0000 | 100.0000 | 100.0000    | 100.0000 | 100.0000 | 100.0000 | No. c   | of samples | s: 17   |
| Phase                 |          |          |          |             | Phase f  | fraction |          |         |            |         |
| PbS                   | 0.590    | 0.695    | 1.051    | 1.269       | 1.751    | 0.205    | 0.585    | 0.000   | 8.841      | 1.492   |
| ZnS                   | 98.629   | 98.810   | 92.876   | 97.954      | 81.878   | 79.819   | 75.226   | 75.226  | 99.098     | 88.570  |
| FeS <sub>2</sub> +FeS | 0.000    | 0.000    | 0.000    | 0.000       | 15.904   | 19.797   | 9.587    | 0.000   | 19.797     | 7.396   |
| CdS                   | 0.480    | 0.367    | 0.362    | 0.253       | 0.467    | 0.179    | 0.155    | 0.000   | 0.480      | 0.210   |
| $Cu_2FeSnS_4$         | 0.000    | 0.000    | 0.000    | 0.000       | 0.000    | 0.000    | 13.830   | 0.000   | 13.830     | 0.814   |
| Fe oxide              | 0.301    | 0.128    | 5.712    | 0.525       | 0.000    | 0.000    | 0.616    | 0.000   | 5.975      | 1.519   |
| Total                 | 100,0000 | 100.0000 | 100.0000 | 100.0000    | 100.0000 | 100.0000 | 100.0000 | Data fi | rom 17 an  | alyses  |

Table 1. Chemical and phase composition of selected sphalerite grains in charge mixture MS1 (raw material).

The average fractions of other elements rarely exceed 0.35 wt%, with slightly higher content in sphalerite grains of MS2 than of MS1 (Table 2). Of particular interest is grain identified as MS1-17, where the highest content of copper and tin has been determined. The composition of this grain includes, in addition to sphalerite and iron sulphides, Cu and Sn sulphide, which in stoichiometric terms corresponds to stannine, the content of which is close to 14 wt%.

The differentiation between the content of the main elements, and particularly of the accompanying elements in sphalerite grains of the charge mixture samples, cannot be made "directly", due to the presence of inclusions, mainly of iron sulphides and oxides and of lead sulphide. These phases may also contain accompanying elements, and the amounts determined are the overall quantities of these elements present in all phases of the sphalerite grains.

In order to demonstrate the association between the various accompanying elements and the phases present in the examined grains of the charge mixture (MS1 and MS2), the values of the correlation coefficient were determined (Table 3).

Accompanying elements show low values of the correlation coefficient with sphalerite and with identified phases found in inclusions in sphalerite grains. One exception is the high correlation between iron oxide and manganese (0.78). Poor positive correlation was observed between:

- sphalerite and Sb,

- Pb sulphide and Ca, Mn, As, Ag, Cd,
- Fe sulphides and Ag,
- Cd sulphide and Ca, As, Se, Ag, Sb,
- Cu, Fe and Sn sulphide and As, Se, Ag,
- Fe oxide and Ca, As, Se, Sb,

which may be an indication that these elements are constituents of the given phase.

Table 2. Chemical and phase composition of sphalerite grains in charge mixture MS2 (raw material).

|          | Analysis |               |         |
|----------|----------|---------------|---------|
|          | num      | ber           | Average |
| Element  | MS2-18   | MS2-19        |         |
| S        | 26.638   | 30.995        | 28.817  |
| Ca       | 0.171    | 0.039         | 0.105   |
| Mn       | 0.805    | 0.109         | 0.457   |
| Fe       | 13.047   | 1.569         | 7.308   |
| Cu       | 0.735    | 0.256         | 0.496   |
| Zn       | 54.062   | 64.487        | 59.274  |
| As       | 0.574    | 0.592         | 0.583   |
| Se       | 0.141    | 0.178         | 0.159   |
| Ag       | 0.040    | 0.039         | 0.040   |
| Cd       | 0.413    | 0.099         | 0.256   |
| Sn       | 0.221    | 0.118         | 0.170   |
| Sb       | 0.342    | 0.178         | 0.260   |
| Pb       | 2.809    | 1.342         | 2.075   |
| Total    | 100.0000 | 100.0000      |         |
| Phase    | P        | hase fractior | 1       |
| PbS      | 3.334    | 1.574         | 2.454   |
| ZnS      | 82.804   | 96.726        | 89.765  |
| CdS      | 0.451    | 0.107         | 0.279   |
| Fe oxide | 13.411   | 1.594         | 7.502   |
| Total    | 100.0000 | 100.0000      |         |

 Table 3. The values of the correlation coefficient between the content of the various phases in sphalerite grains and the content of accompanying elements in the charge mixture (raw material).

| Phase                              | Ca    | Mn    | Cu    | As    | Se    | Ag    | Cd    | Sn    | Sb    |
|------------------------------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| ZnS                                | -0.08 | -0.06 | -0.40 | 0.06  | -0.17 | -0.48 | 0.09  | -0.39 | 0.16  |
| PbS                                | 0.39  | 0.23  | -0.09 | 0.17  | 0.02  | 0.39  | 0.17  | -0.16 | 0.08  |
| FeS <sub>2</sub> +FeS              | -0.23 | -0.31 | 0.01  | -0.30 | -0.11 | 0.44  | -0.18 | 0.07  | -0.24 |
| CdS                                | 0.26  | 0.30  | -0.07 | 0.15  | 0.20  | 0.29  | -     | -0.13 | 0.26  |
| Cu <sub>2</sub> FeSnS <sub>4</sub> | 0.01  | -0.14 | -     | 0.14  | 0.38  | 0.37  | -0.08 | -     | -0.17 |
| Fe oxide                           | 0.45  | 0.78  | 0.04  | 0.28  | 0.26  | -0.43 | 0.11  | -0.07 | 0.26  |

At the same time some of the accompanying elements show similar correlation coefficients for several phases, especially Ag in relation to PbS,  $FeS_2$ –FeS, CdS and Cu<sub>2</sub>FeSnS<sub>4</sub>. This is further evidence showing that the accompanying elements are included in all phases of sphalerite grains of the charge mixture. However, it is difficult to state which of the phases is the main carrier of a given element.

Similar observations were made in the case of phases present in galena grains which contained inclusions of zinc sulphide or iron sulphides in the charge mixture for the process (Adamczyk Z., Nowińska K, Melaniuk-Wolny E., Szewczenko J. – in review).

#### 3.2. Sphalerite Grains in Dusts from the Pyrometallurgical Process

Sphalerite grains present in dusts from the various process stages (PR2, PR3 and PR5), which supplement the raw materials charge, also contain inclusions of other phases, among them, as in the case of the charge mixture, lead sulphide and iron sulphides. In addition, inclusions in sphalerite grains in PR3 dust may be formed of Fe oxide, and in PR5 dust – of Zn oxide (Tables 4 to 6). Also in this case none of the sphalerite grains examined had its chemical composition close to stoichiometric.

| Element               | PR2-1   | PR2-2   | PR2-3   | PR2-4   | PR2-5    | PR2-9   | PR2-10  | Min     | Max      | х      |
|-----------------------|---------|---------|---------|---------|----------|---------|---------|---------|----------|--------|
| S                     | 32.375  | 31.972  | 32.448  | 32.470  | 34.395   | 35.505  | 35.384  | 31.866  | 35.622   | 33.436 |
| Ca                    | 0.000   | 0.000   | 0.019   | 0.049   | 0.000    | 0.000   | 0.056   | 0.000   | 0.056    | 0.017  |
| Mn                    | 0.048   | 0.000   | 0.000   | 0.165   | 0.000    | 0.000   | 0.130   | 0.000   | 1.307    | 0.175  |
| Fe                    | 0.192   | 0.130   | 0.531   | 0.835   | 3.591    | 6.616   | 7.703   | 0.130   | 7.703    | 2.867  |
| Cu                    | 0.029   | 0.050   | 0.300   | 0.000   | 0.115    | 0.000   | 0.435   | 0.000   | 0.435    | 0.119  |
| Zn                    | 65.342  | 64.912  | 64.577  | 63.762  | 61.668   | 56.676  | 53.830  | 53.830  | 65.342   | 61.236 |
| As                    | 0.000   | 0.869   | 0.058   | 0.010   | 0.000    | 0.420   | 0.324   | 0.000   | 0.869    | 0.340  |
| Se                    | 0.000   | 0.659   | 0.000   | 0.039   | 0.000    | 0.000   | 0.000   | 0.000   | 0.659    | 0.070  |
| Ag                    | 0.000   | 0.250   | 0.242   | 0.078   | 0.000    | 0.000   | 0.046   | 0.000   | 0.250    | 0.062  |
| Cd                    | 1.257   | 1.019   | 0.676   | 0.719   | 0.000    | 0.000   | 0.333   | 0.000   | 1.950    | 0.709  |
| Sn                    | 0.000   | 0.000   | 0.010   | 0.078   | 0.000    | 0.000   | 0.472   | 0.000   | 0.472    | 0.096  |
| Sb                    | 0.000   | 0.140   | 0.000   | 0.185   | 0.000    | 0.000   | 0.343   | 0.000   | 0.343    | 0.093  |
| Pb                    | 0.758   | 0.000   | 1.140   | 1.612   | 0.230    | 0.784   | 0.944   | 0.000   | 2.321    | 0.779  |
| Total                 | 100.000 | 100.000 | 100.000 | 100.000 | 100.000  | 100.000 | 100.000 | Data fi | om 17 an | alyses |
|                       |         |         |         | Phase t | fraction |         |         |         |          |        |
| PbS                   | 0.875   | 0.000   | 1.324   | 1.872   | 0.266    | 0.909   | 1.110   | 0.000   | 2.755    | 0.911  |
| ZnS                   | 97.377  | 98.686  | 96.804  | 95.555  | 92.009   | 84.818  | 81.678  | 81.678  | 98.686   | 92.114 |
| FeS <sub>2</sub> +FeS | 0.412   | 0.208   | 1.148   | 1.804   | 7.725    | 14.273  | 16.851  | 0.208   | 16.851   | 6.213  |
| CdS                   | 1.336   | 1.105   | 0.723   | 0.768   | 0.000    | 0.000   | 0.361   | 0.000   | 2.084    | 0.762  |
| Total                 | 100.000 | 100.000 | 100.000 | 100.000 | 100.000  | 100.000 | 100.000 | Data fi | om 10 an | alyses |

Table 4. Chemical and phase composition of sphalerite grains in PR2 dust.

The average lead content in sphalerite grains in the examined dust varied between ca. 0.39 and ca. 1.64 wt%, caused by the presence of Pb sulphide inclusions within the range of average values of ca. 0.45 to 1.92 wt% On the other hand, the average content of iron in these dusts varied from ca. 0.40 to ca. 4.41 wt%, the highest content occurring in PR2 and PR3 (several percent by weight), indicating the presence of iron sulphides in sphalerite grains in average amounts of 6.21 to 8.54 wt% or smaller amounts of Fe oxide (Tables 4 to 6).

One important element present in the examined sphalerite grains is cadmium, the average content of which in dust grains varied from ca. 0.71 to ca. 2.58 wt%. The highest amounts of cadmium were found in one of the sphalerite grains in PR5 dust (8.69 wt%) (Tables 4 to 6).

The average contents of other elements rarely exceed 0.35 wt%, except for Se and Sn in PR3 dust slightly exceeding 0.35 wt%. Selenium, the content of which in one of the sphalerite grains in PR3 dust was determined at nearly 2 wt% (PR3-3), has probably substituted sulphur in sphalerite or in inclusions of lead sulphide or of iron sulphides. The sphalerite grain PR3-6 is also of interest, as the content of Sn and Sb therein exceeds 1 wt% for each of these elements. Both of these elements may be included in Pb sulphides or in sphalerite. However, considering the process applied at the plant, they may form alloy inclusions in sphalerite grains (Tables 4 to 6).

| Element               | PR3-1   | PR3-2   | PR3-3   | PR3-4   | PR3-5    | PR3-6   | PR3-7   | Min    | Max    | х      |
|-----------------------|---------|---------|---------|---------|----------|---------|---------|--------|--------|--------|
| S                     | 31.580  | 30.577  | 31.332  | 35.322  | 29.672   | 35.412  | 37.483  | 29.672 | 37.483 | 33.054 |
| Са                    | 0.079   | 0.000   | 0.010   | 0.000   | 0.087    | 0.000   | 0.000   | 0.000  | 0.087  | 0.025  |
| Mn                    | 0.000   | 0.000   | 0.000   | 0.300   | 0.076    | 0.246   | 1.105   | 0.000  | 1.105  | 0.247  |
| Fe                    | 1.885   | 1.096   | 0.522   | 7.092   | 0.217    | 8.386   | 11.670  | 0.217  | 11.670 | 4.410  |
| Cu                    | 0.000   | 0.000   | 0.083   | 0.263   | 0.260    | 0.000   | 0.000   | 0.000  | 0.263  | 0.087  |
| Zn                    | 64.147  | 62.318  | 63.660  | 55.407  | 57.199   | 52.839  | 48.936  | 48.936 | 64.147 | 57.787 |
| As                    | 0.000   | 0.000   | 0.000   | 0.917   | 0.000    | 0.529   | 0.335   | 0.000  | 0.917  | 0.254  |
| Se                    | 0.237   | 0.474   | 1.909   | 0.000   | 0.693    | 0.000   | 0.000   | 0.000  | 1.909  | 0.473  |
| Ag                    | 0.227   | 0.495   | 0.031   | 0.000   | 0.043    | 0.000   | 0.000   | 0.000  | 0.495  | 0.114  |
| Cd                    | 0.375   | 3.362   | 0.386   | 0.699   | 3.467    | 0.310   | 0.000   | 0.000  | 3.467  | 1.228  |
| Sn                    | 0.296   | 0.938   | 0.261   | 0.000   | 0.000    | 1.012   | 0.000   | 0.000  | 1.012  | 0.358  |
| Sb                    | 0.395   | 0.179   | 0.428   | 0.000   | 0.000    | 1.267   | 0.000   | 0.000  | 1.267  | 0.324  |
| Pb                    | 0.780   | 0.559   | 1.377   | 0.000   | 8.287    | 0.000   | 0.471   | 0.000  | 8.287  | 1.639  |
| Total                 | 100.000 | 100.000 | 100.000 | 100.000 | 100.000  | 100.000 | 100.000 |        |        |        |
|                       |         |         |         | Phase   | fraction |         |         |        |        |        |
| PbS                   | 0.911   | 0.657   | 1.633   | 0.000   | 9.683    | 0.000   | 0.552   | 0.000  | 9.683  | 1.919  |
| ZnS                   | 96.776  | 94.585  | 97.410  | 83.785  | 86.242   | 81.104  | 74.005  | 74.005 | 97.410 | 87.701 |
| FeS <sub>2</sub> +FeS | 0.000   | 0.000   | 0.000   | 15.460  | 0.345    | 18.556  | 25.444  | 0.000  | 25.444 | 8.544  |
| CdS                   | 0.404   | 3.641   | 0.421   | 0.754   | 3.730    | 0.339   | 0.000   | 0.000  | 3.730  | 1.327  |
| Fe oxide              | 1.908   | 1.117   | 0.536   | 0.000   | 0.000    | 0.000   | 0.000   | 0.000  | 1.908  | 0.509  |
| Total                 | 100.000 | 100.000 | 100.000 | 100.000 | 100.000  | 100.000 | 100.000 |        |        |        |

Table 5. Chemical and phase composition of sphalerite grains in PR3 dust.

Table 6. Chemical and phase composition of sphalerite grains in PR5 dust.

| Element               | PR5-1   | PR5-2   | PR5-3     | PR5-4   | Min    | Max    | х      |
|-----------------------|---------|---------|-----------|---------|--------|--------|--------|
| S                     | 28.057  | 28.353  | 31.500    | 30.036  | 28.057 | 31.500 | 29.486 |
| Ca                    | 0.000   | 0.000   | 0.000     | 0.000   | 0.000  | 0.000  | 0.000  |
| Mn                    | 0.000   | 0.000   | 0.000     | 0.000   | 0.000  | 0.000  | 0.000  |
| Fe                    | 0.201   | 0.201   | 0.000     | 1.210   | 0.000  | 1.210  | 0.403  |
| Cu                    | 0.000   | 0.000   | 0.075     | 0.000   | 0.000  | 0.075  | 0.019  |
| Zn                    | 70.107  | 70.803  | 67.305    | 58.952  | 58.952 | 70.803 | 66.792 |
| As                    | 0.000   | 0.000   | 0.011     | 0.000   | 0.000  | 0.011  | 0.003  |
| Se                    | 0.201   | 0.000   | 0.032     | 0.000   | 0.000  | 0.201  | 0.058  |
| Ag                    | 0.000   | 0.000   | 0.398     | 0.180   | 0.000  | 0.398  | 0.145  |
| Cd                    | 0.642   | 0.643   | 0.323     | 8.692   | 0.323  | 8.692  | 2.575  |
| Sn                    | 0.000   | 0.000   | 0.334     | 0.000   | 0.000  | 0.334  | 0.083  |
| Sb                    | 0.160   | 0.000   | 0.022     | 0.000   | 0.000  | 0.160  | 0.046  |
| Pb                    | 0.632   | 0.000   | 0.000     | 0.930   | 0.000  | 0.930  | 0.391  |
| Total                 | 100.000 | 100.000 | 100.000   | 100.000 |        |        |        |
|                       |         | ]       | Phase fra | ction   |        |        |        |
| PbS                   | 0.734   | 0.000   | 0.000     | 1.063   | 0.000  | 1.063  | 0.449  |
| ZnS                   | 85.301  | 84.848  | 96.670    | 82.013  | 82.013 | 96.670 | 87.208 |
| FeS <sub>2</sub> +FeS | 0.000   | 0.747   | 0.000     | 4.459   | 0.000  | 4.459  | 1.301  |
| CdS                   | 0.687   | 0.682   | 0.346     | 9.148   | 0.346  | 9.148  | 2.716  |
| Zn oxide              | 13.278  | 13.723  | 2.984     | 3.316   | 2.984  | 13.723 | 8.325  |
| Total                 | 100.000 | 100.000 | 100.000   | 100.000 |        |        |        |

# 3.3. Accompanying Elements vs. Phase Composition of Sphalerite Grains

In order to demonstrate the association between the various accompanying elements and the phases present in sphalerite grains in the examined dusts, the values of the coefficient of correlation between the

elements and the phases were determined (Table 7). Some of the elements show considerably high value of this coefficient (0.69), either positive or negative, which may be an indication that:

- Pb sulphide may contain Ca, and sometimes Mn (PR2) or Cd (PR5),
- Zn sulphide may contain Cd (PR2) and Cu, As, Ag, Sn (PR5), whereas the process of formation of PR2 and PR3 probably excludes the presence in Zn sulphide of Sn and Mn, respectively,
- Fe sulphides may contain Sn (PR2) and Mn and As (PR3) and Cd (PR5), whereas the process of formation of PR2 probably excludes the presence of Cd,
- Fe oxide may contain Ag (PR3),
- Zn oxide Ag is probably not included in this oxide in the process of formation of PR5 dust.

 Table 7. The values of the correlation coefficient between the content of the various phases in sphalerite grains in dusts and the content of accompanying elements.

| Dust | Phase                 | Ca    | Mn    | Cu    | As    | Se    | Ag    | Cd    | Sn    | Sb    |
|------|-----------------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
|      | PbS                   | 0.79  | 0.76  | 0.43  | -0.03 | -0.33 | -0.05 | 0.01  | 0.10  | 0.56  |
| PR2  | ZnS                   | -0.23 | 0.02  | -0.30 | -0.05 | 0.39  | 0.46  | 0.69  | -0.74 | -0.27 |
|      | FeS <sub>2</sub> +FeS | 0.11  | -0.14 | 0.23  | 0.03  | -0.33 | -0.43 | -0.74 | 0.70  | 0.17  |
|      | CdS                   | -0.04 | 0.24  | -0.14 | 0.26  | 0.18  | 0.10  | 1.00  | -0.34 | 0.01  |
| PR3  | PbS                   | 0.72  | -0.24 | 0.58  | -0.43 | 0.28  | -0.14 | 0.65  | -0.38 | -0.34 |
|      | ZnS                   | 0.33  | -0.85 | -0.09 | -0.61 | 0.63  | 0.57  | 0.25  | 0.21  | 0.03  |
|      | FeS <sub>2</sub> +FeS | -0.57 | 0.86  | -0.13 | 0.73  | -0.62 | -0.55 | -0.56 | -0.09 | 0.14  |
|      | CdS                   | 0.33  | -0.44 | 0.33  | -0.42 | 0.12  | 0.56  | 1.00  | 0.15  | -0.36 |
|      | Fe oxide              | 0.37  | -0.49 | -0.48 | -0.56 | 0.10  | 0.71  | 0.04  | 0.24  | 0.01  |
|      | PbS                   | -     | -     | -0.56 | -0.56 | 0.28  | -0.22 | 0.77  | -0.56 | 0.29  |
|      | ZnS                   | -     | -     | 0.97  | 0.97  | -0.04 | 0.77  | -0.57 | 0.97  | -0.07 |
| PR5  | FeS <sub>2</sub> +FeS | -     | -     | -0.41 | -0.41 | -0.49 | 0.04  | 0.99  | -0.41 | -0.48 |
|      | CdS                   | -     | -     | -0.37 | -0.37 | -0.39 | 0.09  | 1.00  | -0.37 | -0.38 |
|      | Zn oxide              | -     | -     | -0.60 | -0.60 | 0.48  | -0.89 | -0.53 | -0.60 | 0.49  |

The set of basic statistical data (Table 8) demonstrates the differentiation of chemical and phase compositions of sphalerite grains derived from the charge mixture (MS) and from dust (PR). This is manifested mainly in:

- lower average content of such accompanying elements as Ca, Cu and Sn in sphalerite grains in dust as compared to that in grains in charge mixture,
- higher average content of such accompanying elements as Mn, As, Se, Ag and Sb in sphalerite grains in dust as compared to that in grains in charge mixture,

In the first case this may be an indication of migration of these elements from sphalerite grains and from inclusions of other phases contained therein to the products of the process (metallic zinc and metallic lead) or to waste products generated at the various stages of the pyrometallurgical process. The second case indicates that these elements are poorly mobile when it comes to migration to the main and waste products of the process, and on the other hand they show a tendency to move to sphalerite and to new phases formed during the process (Fe oxide and Zn oxide).

The list in Table 8 also demonstrates the differentiation of the average phase fraction of sphalerite grains derived from the charge mixture to dusts, which is manifested by:

- increased sphalerite content in sphalerite grains in dust (PR) at the expense of Pb sulphide, Fe sulphides and Zn oxide as compared to initial content in sphalerite grains in charge mixture (MS),
- increased content of Cd sulphide and Zn oxide.

Thus, a specific geochemical differentiation of accompanying elements present in sphalerite grains (Fig. 1) takes place during the process, including:

- purification of sphalerite grains reduction of the content of accompanying elements Ca, Cu and Sn (even up to 43 wt% for Ca),
- enrichment of sphalerite grains with accompanying elements Mn, As, Se, Ag and Sb (even up to 530 wt% for Se).

| Table 8. Basic statistical data on the chemical and phase composition of examined sphalerite grains derived from |
|------------------------------------------------------------------------------------------------------------------|
| charge mixture (MS) and from dust (PR). Explanation: Min-minimum, Max-maximum, Me-median, x-arithmetic           |
| mean, $\sigma$ -standard deviation, V-variation coefficient.                                                     |

| Flement               | Min   |       | Max   |       | Х     |          | Me    |       | σ    |      | V    |      |
|-----------------------|-------|-------|-------|-------|-------|----------|-------|-------|------|------|------|------|
| Liement               | MS    | PR    | MS    | PR    | MS    | PR       | MS    | PR    | MS   | PR   | MS   | PR   |
| S                     | 26.64 | 28.06 | 36.64 | 37.48 | 32.76 | 32.49    | 32.49 | 32.15 | 2.45 | 2.51 | 0.07 | 0.08 |
| Ca                    | 0.00  | 0.00  | 0.17  | 0.09  | 0.04  | 0.02     | 0.00  | 0.00  | 0.06 | 0.03 | 1.51 | 1.77 |
| Mn                    | 0.00  | 0.00  | 0.81  | 1.31  | 0.10  | 0.16     | 0.06  | 0.00  | 0.18 | 0.35 | 1.73 | 2.18 |
| Fe                    | 0.13  | 0.00  | 13.05 | 11.67 | 5.12  | 2.79     | 5.66  | 0.97  | 3.51 | 3.51 | 0.69 | 1.26 |
| Cu                    | 0.00  | 0.00  | 3.90  | 1.00  | 0.31  | 0.13     | 0.04  | 0.02  | 0.89 | 0.23 | 2.83 | 1.78 |
| Zn                    | 51.06 | 48.94 | 66.18 | 70.80 | 59.31 | 61.22    | 57.30 | 62.54 | 5.12 | 5.60 | 0.09 | 0.09 |
| As                    | 0.00  | 0.00  | 0.64  | 0.92  | 0.19  | 0.24     | 0.11  | 0.01  | 0.22 | 0.32 | 1.17 | 1.34 |
| Se                    | 0.00  | 0.00  | 0.18  | 1.91  | 0.04  | 0.19     | 0.00  | 0.00  | 0.06 | 0.44 | 1.62 | 2.28 |
| Ag                    | 0.00  | 0.00  | 0.26  | 0.50  | 0.08  | 0.09     | 0.04  | 0.00  | 0.09 | 0.14 | 1.11 | 1.60 |
| Cd                    | 0.00  | 0.00  | 0.45  | 8.69  | 0.20  | 1.31     | 0.20  | 0.66  | 0.16 | 1.94 | 0.80 | 1.49 |
| Sn                    | 0.00  | 0.00  | 3.95  | 1.01  | 0.34  | 0.17     | 0.12  | 0.00  | 0.89 | 0.30 | 2.60 | 1.71 |
| Sb                    | 0.00  | 0.00  | 0.58  | 1.27  | 0.13  | 0.15     | 0.00  | 0.00  | 0.19 | 0.29 | 1.39 | 1.86 |
| Pb                    | 0.00  | 0.00  | 7.59  | 8.29  | 1.37  | 1.05     | 0.90  | 0.69  | 1.67 | 1.76 | 1.22 | 1.68 |
|                       |       |       |       |       | Phase | fraction |       |       |      |      |      |      |
| PbS                   | 0.00  | 0.00  | 8.84  | 9.68  | 1.59  | 1.22     | 1.05  | 0.80  | 1.95 | 2.06 | 1.23 | 1.68 |
| ZnS                   | 75.23 | 74.00 | 99.10 | 98.69 | 88.70 | 89.91    | 85.26 | 92.21 | 7.96 | 7.12 | 0.09 | 0.08 |
| FeS <sub>2</sub> +FeS | 0.00  | 0.00  | 19.80 | 25.44 | 6.62  | 5.79     | 0.00  | 1.23  | 7.52 | 7.86 | 1.14 | 1.36 |
| CdS                   | 0.00  | 0.00  | 0.48  | 9.15  | 0.22  | 1.40     | 0.21  | 0.71  | 0.17 | 2.05 | 0.80 | 1.47 |
| $Cu_2FeSnS_4$         | 0.00  | 0.00  | 13.83 | 0.00  | 0.73  | 0.00     | 0.00  | 0.00  | 3.17 | 0.00 | 4.36 | -    |
| Fe oxide              | 0.00  | 0.00  | 13.41 | 1.91  | 2.15  | 0.16     | 0.39  | 0.00  | 3.45 | 0.47 | 1.61 | 2.89 |
| Zn oxide              | 0.00  | 0.00  | 0.00  | 13.72 | 0.00  | 1.51     | 0.00  | 0.00  | 0.00 | 3.99 | -    | 2.64 |

Of interest is also decreased content of Fe and Pb in sphalerite grains derived from dust as compared to that content in sphalerite grains derived from the charge mixture (Fig. 1), the result of which is a drop in the content of phases that contain these elements – Pb sulphide and Fe sulphide (Fig. 2). An opposite case occurs with Cd, the content of which in dust, as compared to its content in the charge mixture, rises significantly to over 600 wt%, leading thereby to increased content of Cd sulphide in dusts (Figs. 1 and 2).



Fig. 1. Differentiation of the average content and percentage change of the average content of elements in sphalerite grains derived from dusts (PR) in relation to the charge mixture (MS)



Fig. 2. Differentiation of the average fraction and percentage change of the average fraction of phases in sphalerite grains derived from dusts (PR) in relation to the charge mixture (MS).

# 4. Conclusions

The investigations carried out allow to draw the following conclusions:

- 1. Sphalerite grains, in both the charge mixture (raw material) and in dusts from the various stages of the pyrometallurgical zinc and lead production process, contain inclusions of Pb sulphide, Fe sulphides, Cd sulphide, Fe oxide and stannine in zinc blende concentrate and of Zn oxide in dusts.
- 2. Sphalerite grains derived from the charge mixture contain admixtures of such accompanying elements as Ca, Mn, Cu, As, Se, Ag, Sn and Sb. These elements are present both in the sphalerite of sphalerite grains, as well as in phases contained therein in the form of inclusions. Some of these elements form their own phases (e.g. Cu, Fe and Sn stannine) or metallic alloys (e.g. Sn and Sb).
- 3. Differences in the content of the various accompanying elements in sphalerite grains in the charge mixture and in dust from the various process stages, may be an indication of migration of these elements during the pyrometallurgical process from sphalerite grains to the main products of the process (zinc, lead) and to waste products.
- 4. A specific geochemical differentiation of accompanying elements present in sphalerite grains takes place during the process, including:

- purification of sphalerite grains reduction of the content of accompanying elements Ca, Cu and Sn,
- enrichment of sphalerite grains with accompanying elements Mn, As, Se, Ag and Sb.
- 5. A decrease is observed in the content of Fe and Pb in sphalerite grains derived from dust as compared to that content in sphalerite grains derived from the charge mixture, the result of which is a drop in the content of phases that contain these elements Pb sulphide and Fe sulphide. An opposite case occurs with Cd, the content of which in dust, as compared to its content in the charge mixture, rises significantly to over 600 wt%, leading thereby to increased content of Cd sulphide in dust.

## References

- Adamczyk Z., Nowińska K, Melaniuk-Wolny E., Szewczenko J. Variation of the content of accompanying elements in galena in pyrometallurgical process of zinc and lead production", Acta Montanistica Slovaca (2010, in review).
- Axelsson, M.D. and Rodushkin, I. (2001) Determination of major and trace elements in sphalerite using laser ablation double focusing sector P eld ICP-MS. Journal of Geochemical Exploration, 72, 81–89.
- Furdyna, J.K. (1988) Diluted magnetic semiconductors. Journal of Applied Physics, 64, R29-R64.
- Lentz D. R. (2002) Sphalerite and arsenopyrite at the Brunswick no. 12 massive-sulfide deposit, Bathurst Camp, New Brunswick: Constraints on p-t evolution. The Canadian Mineralogist, 40, 19-31.
- Nitta E., Kimata M., Hoshino M., Echigo T., Hamasaki A., Nishida N., Shimizu M., Akasaka T. (2008) Crystal chemistry of ZnS minerals formed as high-temperature volcanic sublimates: matraite identical with sphalerite. Journal of Mineralogical and Petrological Sciences, 103, 145-151.
- Pattrick, R.A.D., Dorling, M., and Polya, D.A. (1993). TEM study of Indium- and Copper-bearing growth-banded sphalerite. Canadian Mineralogist, 31, 105–117.
- Pattrick, R.A.D., Mosselmans, J.F.W., and Charnock, J.M. (1998) An X-ray absorption study of doped sphalerites. European Journal of Mineralogy, 10, 239–249.
- Pozzi M., Nowińska K. (2006). Distribution of Selected Accompanying Elements in Zn-Pb Concentrates in the Imperial Smelting Process; in Polish, Wydawnictwo Politechniki Śląskiej.
- Sokołowski J., Nosiła M., Pluta B (1980). Fundamentals of X-Ray Microanalysis; in Polish, Wydawnictwo Politechniki Śląskiej.
- Twardowski, A. (1990). Magnetic properties of Fe-based diluted magnetic semiconductors. Journal of Applied Physics, 67, 5108-5113.
- Zinc and Lead Production Process in "Miasteczko Śląskie" Zinc Smelting Plant; in Polish. (2000) HC "Miasteczko Śląskie" (unpublished).