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Abstract- Superpixels are segments in an image which can serve as basic units in the further image processing. Their
purpose is to reduce the redundancy in the image and increase efficiency from the point of view of the next processing
task. Many methods for the computation of superpixels were already presented. A drawback of most of these methods
is their high computational complexity and hence high computational time consumption. Watershed segmentation
seems to be an appropriate fast way for superpixel segmentation, but it is necessary to remove the noise and local
extremas that cause unwanted oversegmentation. Second, a sophisticated method for marker image calculation which
respects both the remaining natural edges in the image and the regularity of marker placement in still regions of
the image still has to be developed. This paper provides a fast method of segmenting an image into superpixels
by a morphological approach. First we exploit morphological image reconstruction to eliminate irrelevant spatial
local extreme intensities in the image and hence also to remove irrelevant edges. Then we generate markers for
morphological watershed segmentation. The result is a fast algorithm comparable to state-of-the-art algorithms that is
convenient for real-time or near real-time applications.
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1. Introduction
Superpixels are regions in an image which can be used as basic units (primitives) in the next image

processing like segmentation, salience mapping or object detection. Superpixels typically cover the whole
image, they are distributed regularly with respect to the nature of the input image, the desirable variation of
the size of superpixels is preferably small and the boundary of superpixels has to be corresponding with the
natural boundary of objects presented on the image.

Our purpose is to propose a computational efficiency superpixel segmentation method which can be used
in near real-time applications for object segmentation and object recognition. The basic concept assumes the
segmented superpixels as the basic regions for calculation of correspondent local area features and then those
processing in feature space using a classification method.

This paper presents a novel fast method of the dense over-segmentation method using methods of mor-
phological processing especially the morphological reconstruction introduced by Vincent (Vincent, 1993)
and morphological watershed segmentation, both controlled by markers.

2. Related Work
Selected published methods of superpixel segmentation are shortly summarized in this section.
In Spatially Coherent Clustering Using Graph Cuts (Zabih and Kolmogorov, 2004), Zabih and Kol-

mogorov propose a method with the goal to overcome the absence of spatial coherence in segmentation if a
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clustering in feature space is used. A energy function which consists of a term representing the energy in the
spatial space and a term representing the energy in the feature space is to be minimized using graph cuts.

Veksler and Boykov (Veksler et al., 2010) formulate the superpixel partitioning problem in an energy
minimization framework, and optimize with graph cuts. Presented energy function explicitly encourages
regular superpixels and this method is also suitable for 3D “supervoxel” segmentation. An image is covered
with overlapping square patches of fixed size. Hence, each pixel is covered by several patches, and the task
is to assign a pixel to one of them.

TurboPixels (Levinshtein et al., 2009) is an iterative algorithm which starts by evolution from seeds
placed regularly in the image. The algorithm then iterate until no further evolution is possible, i.e., when
the speed at all boundary pixels is close to zero. The iteration loop involve: an evolution of this boundary,
estimation of the skeleton of the unassigned region and updating of the the speed of each pixel on the
boundary and of unassigned pixels in the boundarys immediate vicinity.

Shi and Malik (Shi and Malik, 1997) propose a graph-theoretic criterion for measuring the goodness
of an image partition - the normalized cut. The authors showed that the minimization of this criterion
can be formulated as a generalized eigenvalue problem. A computational method based on this idea has
been developed and presented by the authors and applied to segmentation of brightness, colour, and texture
images.

Felzenszwalb and Huttenlocher (Felzenszwalb and Huttenlocher, 2004) define a predicate for evaluating
of two regions of an image whether or not there is evidence for a boundary between two components in a
segmentation. This predicate is based on measuring the dissimilarity between elements along the boundary
of the two components relative to a measure of the dissimilarity among neighboring elements within each of
the two components.

Achanta (Achanta et al., 2010) present two segmentation methods which may be assigned in the category
of gradient ascent algorithms. SLIC Simple Linear Iterative Clustering method clusters pixels on their colour
according to pixels similarity and proximity in the image plane. The authors use 5-dimensional vector, which
consists of the pixel colour vector in CIE L*a*b* colour space and spatial coordinates x,y using Euclidean
distances for the measure of similarity.

3. Proposed Method - Morphological Superpixel Segmentation (MSS)
Our goal is to use the superpixels as basic units in the salient object detection and in the object recognition

task in our future work. With respect to this goal the desired method is expected to fulfil the following criteria:
- The method should be fast enough to run in near real time application.
- The clusters should have low intra-cluster variation and/or high inter-cluster variation.
- Spatial coherence of clusters in image space.
- The boundary of the segmented superpixel should follow the boundary of regularly sized and regularly

distributed rectangular regions as far as no saliency edge are in the neighbourhood.
Local spatial maxima and local minima in image, whose area is small compared with the desired size

of the segmented superpixel (irrespective the corresponding intensity value of this local extrema) will be
regarded as irrelevant and will have no contribution to the segmentation.

Our approach is based on morphological processing and use of 8-connectivity. This methods are time
efficient and guarantee a spatial coherence. The crucial point is a question: which edge is a saliency edge and
which edge should be ignored in the process of superpixel boundary? For this decision we have constructed
an enhanced image which has been done by removing of all regional-local intensity extrema, hence removing
all edges with local significance. The remaining edges are global and will be accepted as saliency edges.
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3.1. Image Enhancement Using Morphological Reconstruction
Vincent (Vincent, 1993) has introduced a morphological reconstruction which belongs to geodesic oper-

ations. The operation finds all local extrema - peaks. The morphological process of removing of this detected
peaks from image f is controlled by a marker image g.

Fig. 1. Morphological reconstruction of a 1D signal.

Given an input image f , every value of the marker image g has to satisfy Equation 1 in each x,y position.
The gray-scale reconstruction p(J) of f from g for a pixel p (with thresholds Tk) is given by Equation 2.

g(x,y)≤ f (x,y) (1)

pI(J)(p) = max{k ∈ [0,N−1]|p ∈ pTk(I)(Tk(J))} (2)

The operation of morphological reconstruction is illustrated in Figure 1. The proper marker image
strongly depend on the desired application, in our case should marker image allow a removing of local
extrema - circular blobs with given maximum diameter. For this purpose we use a marker image generated
simply by morphological erosion. The parameter — size of circular structural element S — can be directly
derived from the maximum area diameter of local peaks to be removed.

We experimented with multiple values of S and selected S = 7. We apply the operation of morphological
reconstruction 6 times: 3× for input image R,G,B channels (removing local maximum extrema) and 3× for
R,G,B channels of inverted image (removing local minima extrema). The result of applying morphological
reconstruction on an image is illustrated in Figure 2.

Fig. 2. Left: Input image. Right: Morphological reconstruction removes local extrema.
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3.2. Marker Generation for Watershed Segmentation
For segmentation we use the common technique — marker controlled morphological watershed seg-

mentation originally proposed by (Beucher and Lantuejoul, 1979). The process of generating the watershed
markers is of high importance in this case. The markers (seeds) have to respect the regular distribution of
superpixels on on the one hand and saliency edges on the other hand. Already presented watershed super-
pixel segmentations are based only on regular distribution of markers. We use this basic regular superpixel
segmentation as reference benchmark in our evaluation.

The previously described morphologically enhanced image (see Section 3.1) is used as an input for the
next calculation — difference of Gaussian-blurred image and the input image. The output difference image
is then blurred one more time with second Gaussian kernel convolution. The output of this processing is a
gradient edge image E used to place the markers seeds as follows:

- each seed is first placed in the local minimum of the rectangular area given by regular grids
- the seeds are growing by morphological flooding (using 8-connectivity) in the image E while this

growing area is restricted by the rectangle area of regular grids. The flooding threshold f t is a parameter for
balancing between contribution of the edges in image E and contribution of regular grids.

The effect of varying the threshold f t is illustrated in Figure 3.

Fig. 3. The effect of choosing threshold f t for marker generation, left to right: 0, 1, 2.

3.3. Marker controlled Watershed segmentation
Meyer proposed an efficient algorithm for marker controlled watershed segmentation based on growing

regions in (Meyer, 1992) based on the similarity measure d between a point p and its neighbouring marked
region r is colour difference:

d = max{|pr− rr|, |pg− rg|, |pb− rb|} (3)

This definition was used in the presented evaluation, but we plan to investigate more sophisticated similarity
measures in our future work.

The entire sequence of operations of MSS can be seen in Figure 4.

4. Evaluation
In order to evaluate the superpixel segmentation algorithms, we decided to modify the Superpixel

Benchmark Toolbox (Neubert and Protzel, 2012), which was used to evaluate multiple superpixel segmenta-
tion algorithms: Normalized Cuts, Felzenszwalb-Huttenlocher Segmentation, Edge Augmented Mean Shift,
Quickshift, Marker-Controlled Watershed Segmentation (WS), Entropy Rate Superpixel Segmentation, Tur-
bopixel Segmentation, and Simple Linear Iterative Clustering (SLIC).

To verify that our algorithm achieves comparable performance to the benchmark, we also independently
evaluated the WS and SLIC algorithms. The results of these algorithms are present in our evaluation and
they correspond to the results obtained in (Neubert and Protzel, 2012). All algorithms were evaluated on the
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Fig. 4. MSS in steps, left to right: input image; morphological reconstruction; markers for watershed; superpixel
boundaries after watershed; fused image.

Berkeley Segmentation Data Set and Benchmarks 500 (BSDS500) dataset (Arbelaez et al., 2011), containing
500 images and hand-drawn contours serving as ground truth.

We used four metrics to evaluate the different superpixel segmentation algorithms: Boundary recall,
Undersegmentation error, Mean distance to edge and Intra-cluster variation.

The first two metrics were used verbatim from the Superpixel Benchmark Toolbox in order to achieve
comparable results. They require a ground truth segmentation made by humans, available in the dataset. We
have proposed the remaining two metrics with the goal to evaluate additional aspects of the segmentation.

All metrics were evaluated for each image (of the dataset of 500 images) processed with a given algorithm
to a requested number of superpixels (the resulting number of superpixels can be different than requested).
For comparison, we also added a simple algorithm which creates superpixels by means of simple rectangular
areas in a rigid grid (BOX).

4.1. Boundary Recall
Boundary recall (BR) is the fraction of hand-segmented edges which lie within a threshold distance k of

any superpixel edge (in our experiments, k = 2). Since there can be multiple ground truth images for a single
input image, they are added together using the OR operation.

The true positives (T P) count is the number of pixels in hand-segmented image, for which there is
a superpixel boundary pixel in range k. The false negative (FN) count is the number of pixels in hand-
segmented image for which there is no superpixel boundary pixel in range k. Given these, we can calculate
the boundary recall BR as in Equation 4:

BR =
T P

T P+FN
(4)

The disadvantage of this metric is that it does not take into account the direction of the edges. Superpixel
borders which intersect hand-segmented edges also contribute to the boundary recall. This metric also does
not distinguish between superpixel edges which are off by 0, 1 and 2 pixels — they all contribute to the
boundary recall equivalently.

4.2. Undersegmentation Error
Undersegmentation error (UE) describes how much area of superpixels crosses the hand-segmented

edges. Please refer to original paper (Neubert and Protzel, 2012) for more information on its calculation.
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4.3. Mean Distance to Edge
T he main purpose of mean distance to edge (MDE) metric is to solve the issues with boundary recall,
mainly superpixel–hand-drawn segmentation intersections contributing positively to the recall.

To calculate MDE, we first apply distance transformation to the superpixel segmentation, to get a value
for each pixel specifying how far it is from any superpixel edge. Then, we process the hand-segmented image
by summing all the distance values for non-zero pixels in the ground truth data. Given a distance image dist
and a list of hand-segmented pixels HS, the calculation of MDE can be seen in Equation 5:

MDE =
1
N ∑

p∈HS
dist(p) (5)

The main motivation behind this metric is to favour such segmentation, where the superpixel boundaries
follow the human segmentation more closely. With BR, it is sufficient for a superpixel boundary to lie within
k pixels of the hand-segmentation to count as T P. With MDE, it would get a higher mean distance than a
boundary which exactly follows the hand-segmentation.

4.4. Intra-cluster variation
This metric describes the quality of segmentation by calculating the mean standard deviation within

each superpixel (cluster of pixels). Good segmentation should create homogeneous clusters with smaller
differences within each superpixel. In order to compare the intra-cluster variation, we measure the standard
deviation of RGB values within each superpixel, and average it over the entire image.

Given a set of superpixels S in an image, where each superpixel s is a set of pixels belonging to it and
having a mean value of µs, we can calculate IV as in Equation 6:

IV =
1
|S|∑s∈S

√
∑p∈s(p−µs)2

|s|
(6)

5. Results
5.1. Evaluation Using Metrics

The results of the evaluation of metrics (see Section 4) can be seen in Figures 5 and 6, comparing our
method Morphological Superpixel Segmentation (MSS) with SLIC, regular grid watershed segmentation
(WS) and also a simple rigid grid segmentation (BOX).
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Fig. 5. Left: Boundary recall results. Right: Undersegmentation error.
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Fig. 6. Left: Mean distance to edge. Right: Intra-cluster variation.

As can be seen from Figure 5, MSS almost consistently achieves better results than the SLIC algorithm
in Boundary recall and also in Undersegmentation error. It is also consistently better than the basic WS
algorithm.

Our proposed evaluation metrics Mean distance to edge and Intra-cluster variation (Figure 6) are less
affected by perpendicularly intersecting boundaries of superpixel which misrepresent the results mainly if
the size of superpixel is small. The MDE metric shows that MSS tends to follow human-segmented contours
more closely than other evaluated algorithms. The WS algorithm achieves better results in Intra-cluster
variation mainly because its markers start as single pixels and always grow in minimal increments, whereas
MSS forces an initial selection of regions, which may already contain more variance.

5.2. Timing
The results of the evaluation were obtained on a computer with Intel Core i3 processor clocked at

2.27GHz. The timing results depending on the resolution of the input image can be seen in Table 1. We
only compared SLIC, WS and our proposed MSS.

Table 1. The mean time required to compute superpixels depending resolution.

Resolution SLIC WS MSS
192x108 33 ms 4 ms 26 ms
384x216 127 ms 17 ms 33 ms
960x540 766 ms 102 ms 118 ms
1344x756 1511 ms 231 ms 228 ms
1920x1080 3132 ms 462 ms 470 ms

MSS is consistently faster than SLIC, and does not degrade with larger resolutions as fast as SLIC. MSS
is significantly slower than WS only on low resolution images, where the morphological image reconstruc-
tion causes overhead. However, in higher resolution images the timing tends to level out between MSS and
WS because the overhead is compensated by providing a much larger initial marker area, leaving less work
to the watershed algorithm.

This favours the proposed method for the use in real time or near real time application of object recogni-
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tion systems which use superpixels as basic units.

6. Conclusion
We presented a morphological approach to the superpixel segmentation (MSS) which achieves results

which are comparable to and better than with the SLIC method.
The evaluation also includes two proposed metrics which aim better to evaluate the superpixel boundary

quality in the case of increasing amount of superpixels without a bias of perpendicularly intersecting bound-
aries of superpixel. Ours proposed superpixel segmentation method is also more suitable for fast object
recognition tasks than SLIC, mainly as the resolution of input images increases.

Our future work is towards the improving of the similarity measure between a point and its neighbouring
used in watershed algorithm and we will develop an object recognition system based on superpixels.
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