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Abstract- This paper considers discrete-time switched systems under dwell-time switching and in the presence of
saturation nonlinearity. Based on Multiple Lyapunov Functions and using polytopic representation of nested saturation
functions, a sufficient condition for asymptotic stability of such systems is derived. It is shown that this condition is
equivalent to linear matrix inequalities (LMIs) and as a result, the estimation of domain of attraction is formulated
into a convex optimization problem with LMI constraints. Through numerical examples, it is shown that the proposed
approach is less conservative than the others in terms of both minimal dwell-time needed for stability and the size of
the obtained domain of attraction.
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1. Introduction
This paper considers the computation of domain of attraction (DOA) of discrete-time switched systems

with saturation nonlinearity in the form of{
x(t +1) = Aσ(t) x(t)+Bσ(t)sat(u(t))

u(t) = Kσ(t) x(t)
(1)

where, x ∈ Rn, u ∈ Rm are the state and control variables respectively. σ(t) : Z+ → IN := {1, · · · ,N}
is also a time-dependent switching signal that indicates the current active mode of the system among N
possible modes in IN . Symbol sat(·) is the standard vector-valued saturation function, i.e., sat(u) =
[sat(u1), · · · ,sat(um)]

T , with sat(u j) = sgn(u j)min{1, |u j|}. Without loss of generality, the saturation limit
is normalized to one, by appropriately scaling the Bσ and Kσ matrices.

The study of switched systems has been quite active in the past decade due to their potential in mod-
eling of many practical real-life systems (see e.g. car transmission systems (Johansson et al., 2004),
multiple-controller systems (Morse, 1996), genetic regulatory networks (Jong et al., 2004), etc). Most
of the literature of the switched systems is concerned with conditions that ensure stability of the system
(1Introductionequation.1.1) in the absence of saturation and when σ(·) is an arbitrary switching function
(Daafouz et al., 2002; Blanchini et al., 2007; Hu and Blanchini, 2010). Others consider stability of switched
systems when σ(·) satisfies some dwell-time restrictions (Zhai et al., 2002; Blanchini and Colaneri, 2010;
Dehghan and Ong, 2012a; Geromel and Colaneri, 2006; Chesi et al., 2012; Dehghan and Ong, 2012b, 2013).

Since most of the physical actuators/sensors are subject to hardware limitations, presence of control
saturation is always inherent to control systems, which may cause performance degradation and/or stability
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loss. Moreover, computation and characterization of DOA of such systems is specially challenging as their
DOA is known to be generally non-convex (Hu and Lin, 2001; Sun, 2007). Thus, estimation of DOA of
switched systems in the presence of saturation nonlinearity has received the attention of many researchers
(see, e.g., (Benzaouia et al., 2004, 2006; Lu and Lin, 2008; Dehghan et al., 2011)).

While several approaches have been proposed to handle saturation nonlinearity, two of them appear
promising. The first approach is to describe the saturation nonlinearity as a local sector bound nonlinearity
with different multipliers (see, e.g. (Khalil, 2002; Tarbouriech et al., 2006)). Then, the S-procedure is used to
derive sufficient conditions for stability of the resulted nonlinear system. The second approach, is based on
the polytopic representation of saturation nonlinearity (da Silva and Tarbouriech, 2001; Hu et al., 2002b,a),
in which the saturation function is represented as a linear differential/difference inclusion (LDI). With this
representation, conventional tools designed for linear systems can be used for saturated systems. It has been
realized that the second approach generally leads to less conservative results (Zhou et al., 2011). Although
the above mentioned approaches have been applied for switched systems under arbitrary switching (see e.g.
(Benzaouia et al., 2004, 2006; Lu and Lin, 2008; Jungers et al., 2011)), the extension of these methods for
switched systems under dwell-time switching is not trivial due the complex structure of switching sequences
that satisfy the dwell-time restriction. To the best of our knowledge there are very few results on such systems
(Ni and Cheng, 2010; Chen et al., 2012).

This paper presents an LDI-based approach for computation of DOA of system
(1Introductionequation.1.1) when σ(·) is a switching function that satisfies the dwell-time restriction.
We formulate the problem into an optimization with linear matrix inequalities (LMI) constraints that
asymptotically stabilizes system (1Introductionequation.1.1) and at the same time enlarges its DOA. We
show that our result is less conservative than the others in terms of both minimal dwell-time needed for
stability and the size of the obtained DOA.

In the limiting case, where the dwell-time is one sample period, σ(·) becomes an arbitrary switching
function, and our method retrieves the results of arbitrary switched systems appeared in the literature (see,
e.g., (Benzaouia et al., 2004, 2006)). Hence, this work can also be seen as a generalization of those obtained
for arbitrary switched systems.

The rest of this paper is organized as follows. This section ends with a description of the notations used.
Section 2Preliminariessection.2 reviews some standard terminology and preliminary results for switched
systems. Section 3Main Resultssection.3 presents the main results including the LMI formulation of the
problem. Sections 4Numerical Examplesection.4 and 5Conclusionsection.5 contain, respectively, numerical
examples and conclusions.

The following notations are used. Z+ is the set of non-negative integers. Given an integer m ≥ 1,
define Vm := {S : S ⊆ {1, ...,m}} as the set of all subsets of {1, ...,m}. Clearly, { /0} ∈ Vm and there are
2m elements in the set Vm. Also let Sc = { j ∈ {1, ...,m} : j /∈ S} to be the complement of S in {1, ...,m}.
Given a > 0, the floor function bac is the largest integer that is less than a. The p-norm of a vector or a
matrix is ‖ · ‖p, p = 1,2,∞ with ‖ · ‖ refers to the 2-norm and Br := {x ∈ Rn : ‖x‖ ≤ r} is a norm ball with
radius r. Given a matrix Y ∈ Rm×n, Y i• is the i-th row and Y • j is the j-th column of Y and L (Y ) := {x :
‖Y x‖∞ ≤ 1} = {x : |Y i•x| ≤ 1,∀i = 1, · · · ,m}. The transpose of a vector/matrix X is denoted by XT and Im

is the m×m identity matrix. Positive definite (semi-definite) matrix, P ∈ Rn×n, is indicated by P� 0(� 0),
E (P) := {x : xT Px ≤ 1} and λmax(P), λmin(P) denote respectively the maximum and minimum eigenvalues
of P. Other notations are introduced when they are needed.

2. Preliminaries
This section begins with the standard definitions of systems under dwell-time switching and assumptions

on the system, followed by preliminary stability results.
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Definition 1. Let a switching sequence of (1Introductionequation.1.1) be denoted by S (t) =
{σ(t−1), · · · ,σ(1),σ(0)} with switching instants at t0, t1, · · · , tk, · · · with t0 = 0 and tk < tk+1. System
(1Introductionequation.1.1) has a dwell-time of τ if tk+1− tk ≥ τ for all k ∈ Z+. In addition, any switching
sequence that satisfies this condition is said to be dwell-time admissible (DT-admissible) with dwell-time τ

and is denoted by Sτ .

System (1Introductionequation.1.1) is assumed to satisfy the following assumptions: (A1) Ai +BiKi is
discrete-time Hurwitz for all i ∈ IN ; (A2) A value of τ ≥ 1 has been identified such that the unsaturated
switched system (1Introductionequation.1.1) is asymptotically stable with dwell-time τ .

Assumption (A1) defines the family of systems considered in this work and is a reasonable requirement.
The presence of a minimal dwell-time that ensure asymptotic stability of system (1Introductionequation.1.1)
is well-known (Zhai et al., 2002; Dehghan and Ong, 2012a). Hence, assumption (A2) is made out of conve-
nience and poses no restriction. In addition, it is assumed that there is no control on the switching rule by
the user, except that the switching rule satisfies the dwell-time consideration.

In order to provide stability conditions for system (1Introductionequation.1.1), additional notations are
required. Consider the i-th mode of (1Introductionequation.1.1). Then the successor state of x, Fi(x), under
mode i is

Fi(x) = Ai x+Bi sat(Kix). (2)

Repeating the above leads to

F2
i (x) = Fi(Fi(x)) = AiFi(x)+Bi sat(KiFi(x))

...

F t
i (x) = Fi(F t−1

i (x)) = Fi(Fi(· · ·Fi(x))) (3)

where F t
i (x) is the state evolution of (1Introductionequation.1.1) after t-steps with x(0) = x and

Sτ(t) = {i, i, · · · , i}. Using this definition, the following result which is based on the Multiple Lya-
punov Functions (MLFs) provides a sufficient condition for asymptotic stability of the origin of system
(1Introductionequation.1.1).

Theorem 1. Assume that, for some τ ≥ 1, there exists a collection of positive definite matrices Pi � 0 for
each i ∈IN such that(

Fi(x)
)T Pi

(
Fi(x)

)
− xT Pi x < 0, ∀x 6= 0,∀i ∈IN (4)(

Fτ
i (x)

)T Pj
(
Fτ

i (x)
)
< xT Pi x, ∀x 6= 0,∀(i, j) ∈IN×IN , i 6= j (5)

Then, the equilibrium solution x = 0 of saturated switched system (1Introductionequation.1.1) is globally
asymptotically stable with dwell-time τ .

Proof. Consider any DT-admissible switching sequence with dwell-time τ in accordance with Definition
1definition.1. Without loss of generality, assume that σ(t) = i for all t ∈ [tk, tk+1) where tk+1 = tk +∆k and
∆k ≥ τ . At tk+1, system switches to mode j and hence σ(tk+1) = j. Consider an associated Lyapunov
function Vi(x) = xT Pi x for each mode i ∈IN and define V (x(t)) := x(t)T Pσ(t)x(t). From (4equation.2.4), it
follows that V (x(t +1))−V (x(t)) =Vi(x(t +1))−Vi(x(t))< 0 is negative definite for all t ∈ [tk, tk+1) along
an arbitrary trajectory of (1Introductionequation.1.1) and thus there exists a λ ∈ (0,1) and α > 0 such that

‖x(t)‖2
2 ≤ α λ

t−tk V (x(tk)), ∀t ∈ [tk, tk+1) (6)
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On the other hand, from (5equation.2.5) it follows that

V
(
x(tk+1)

)
=
(
F∆k

i (x(tk))
)T Pj

(
F∆k

i (x(tk))
)

<
(
F(∆k−τ)

i (x(tk))
)T Pi

(
F(∆k−τ)

i (x(tk))
)

< x(tk)T Pi x(tk) =V
(
x(tk)

)
(7)

where the second inequality follows from (4equation.2.4) and the fact that ∆k − τ ≥ 0. Equation
(7Preliminariesequation.2.7) implies that there exists a µ ∈ (0,1) such that V (x(tk+1))< µV (x(tk)) and thus

V (x(tk+1))< µ
k V (x(0)), ∀k ∈ Z+ (8)

This together with (6Preliminariesequation.2.6) imply that the equilibrium solution x = 0 of
(1Introductionequation.1.1) is asymptotically stable.

While conditions (4equation.2.4) and (5equation.2.5) guarantee asymptotic stability of
(1Introductionequation.1.1), they are not tractable due to the existence of nested saturation functions
in Fτ

i (x). In the following section, the LDI representation of saturation function is explored to transform
conditions of Theorem 1thm.1 into linear matrix inequality (LMI) constraints that can be efficiently solved
with convex optimization routines.

3. Main Results
The LDI approach is generalized in this section and is used for estimation of DOA of system

(1Introductionequation.1.1) under dwell-time switching. LDI approach uses auxiliary terms and exploits
their convex hull to represent the saturation function as summarized in the following lemma:

Lemma 1. (Hu et al., 2002a) For any S ∈ Vm, define DS to be the m×m diagonal matrix with diagonal
elements DS( j, j), whose value is 1 if j ∈ S and 0 otherwise. Also define DSc = Im−DS. Then, for all u ∈Rm

and v ∈ Rm such that
∣∣v j
∣∣≤ 1 for all j = 1, · · · ,m:

sat(u) ∈ co{DScu+DS v : ∀S ∈ Vm} (9)

To illustrate the main idea of the LDI approach, consider any u∈R2 as an example. According to Lemma
1lem.1, for any v = [v1,v2]

T ∈ R2 such that |v1| ≤ 1, |v2| ≤ 1, it follows that

sat
([

u1
u2

])
∈ co

{[
u1
u2

]
,

[
u1
v2

]
,

[
v1
u2

]
,

[
v1
v2

]}
.

In other words, the above lemma states that sat(u) can be expressed as a convex hull of vectors formed
by choosing some rows (those belonging to S) from v and the rest (those belonging to Sc) from u. Using
(9equation.3.9) and assuming that u = Kix and v is replaced by some linear function Hi x, it follows that

sat(Ki x) ∈ co{DScKi x+DS Hi x : ∀S ∈ Vm} (10)

for all x ∈L (Hi) := {x : |H j•
i x| ≤ 1}= {x : ‖Hix‖∞ ≤ 1}. Now, for a given S ∈ Vm define

Ei,Hi

(
x,S
)

:=
(

Ai + ∑
j∈Sc

B• j
i K j•

i

)
x+
(

∑
j∈S

B• j
i H j•

i

)
x (11)
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and it follows from (2Preliminariesequation.2.2), (10Main Resultsequation.3.10) and (11Main
Resultsequation.3.11) that for every x ∈L (Hi)

Fi(x) ∈ co{Ei,Hi(x,S) : ∀S ∈ Vm} (12)

While the LDI representation of Fi(x) appeared in (4equation.2.4) is easily obtained from Lemma 1lem.1,
the characterization of Fτ

i (x) appeared in (5equation.2.5) is difficult as it consists of τ nested saturation
functions. The rest of this section describes the characterization of F t

i (x) by introducing t auxiliary variables
Hi,1, · · · ,Hi,t . Each of these variables are introduced for LDI representation of one of the nested saturations.

Consider F2
i (x) and suppose that Hi,1 and Hi,2 are associated for LDI representation of sat(Kix) and

sat(KiFi(x)), respectively. Define

Ei,Hi,2

(
Fi(x),S

)
:=
(

Ai + ∑
j∈Sc

B• j
i K j•

i

)
Fi(x)+

(
∑
j∈S

B• j
i H j•

i,2

)
x (13)

Then, from (11Main Resultsequation.3.11)-(13Main Resultsequation.3.13), it follows that

Fi(x) ∈ co{Ei,Hi,1(x,S1) : ∀S1 ∈ Vm}, ∀x ∈L (Hi,1) (14)

F2
i (x) = Fi(Fi(x)) ∈ co{Ei,Hi,2(Fi(x),S2) : ∀S2 ∈ Vm}, ∀x ∈L (Hi,2) (15)

Since F2
i (x) is represented by the convex-hull of Ei,Hi,2(Fi(x),S2), and Fi(x) is by itself a convex-hull of

Ei,Hi,1(x,S1), it is straightforward1 to expand F2
i (x) as

F2
i (x) ∈ co{Ei,Hi,2

(
Ei,Hi,1(x,S1),S2

)
: ∀S1,S2 ∈ Vm}, ∀x ∈L (Hi,1)∩L (Hi,2). (16)

An example that illustrates this is given next. Consider a single-input system where m = 1 and hence
Vm = {{ /0},{1}}. From (16Main Resultsequation.3.16), it follows that Ei,Hi,2

(
Ei,Hi,1(x,S1),S2

)
takes one of

the following four expressions, depending on the values of S1,S2 ∈ Vm:

S1 = { /0},S2 = { /0} : Ei,Hi,2

(
Ei,Hi,1(x,{ /0}),{ /0}

)
= (Ai +BiKi)

2x (17)

S1 = { /0},S2 = {1} : Ei,Hi,2

(
Ei,Hi,1(x,{ /0}),{1}

)
= Ai(Ai +BiKi)x+Bi Hi,2 x (18)

S1 = {1},S2 = { /0} : Ei,Hi,2

(
Ei,Hi,1(x,{1}),{ /0}

)
= (Ai +BiKi)Ai x+(Ai +BiKi)Bi Hi,1 x (19)

S1 = {1},S2 = {1} : Ei,Hi,2

(
Ei,Hi,1(x,{1}),{1}

)
= A2

i x+AiBi Hi,1 x+Bi Hi,2 x (20)

Note that each one of the above expressions is an affine function of Hi,1x, Hi,2x. Therefore, F2
i (x) which

is the convex-hull of them, is also an affine function of Hi,1x and Hi,2x. This is a key property used for the
conversion of condition (5equation.2.5) into an LMI (see Section 3.1LMI Formulation and Enlarging the
Domain of Attractionsubsection.3.1).

Similar to the above procedure, by associating auxiliary matrices Hi,1, Hi,2, · · · , Hi,t to each one of the
nested saturation functions appeared in F t

i (x), it follows that

F t
i (x) ∈ co

{
Ei,Hi,t (· · ·(Ei,Hi,1(x,S1), · · ·),St) : ∀S1, · · · ,St ∈ Vm

}
, ∀x ∈L (Hi,1)∩·· ·∩L (Hi,t). (21)

1When α ∈ co{αi : i = 1, · · · ,nα}, β ∈ co{β j : j = 1, · · · ,nβ } and γ = α + β . Then, γ ∈ co{αi + β j : i ∈ {1, · · · ,nα}, j ∈
{1, · · · ,nβ }}.
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To simplify the notations of F t
i (x), let

Ei (x,S1) := Ei,Hi,1(x,S1)

E2
i (x,S1,S2) := Ei,Hi,2

(
Ei,Hi,1(x,S1),S2

)
...

Et
i (x,S1, · · · ,St) := Ei,Hi,t (· · ·(Ei,Hi,1(x,S1), · · ·),St) (22)

With these notations, the following theorem provides an estimate of DOA of (1Introductionequation.1.1).

Theorem 2. Suppose for some τ ≥ 1, there exist a collection of Pi� 0 and matrices Hi,1,Hi,2, · · · ,Hi,τ ∈Rm×n

for each i ∈IN such that[
Ei(x,S1)

]T Pi
[
Ei(x,S1)

]
− xT Pi x < 0, ∀x 6= 0,∀i ∈IN ,∀S1 ∈ Vm (23)[

Eτ
i (x,S1, · · · ,Sτ)

]T Pj
[
Eτ

i (x,S1, · · · ,Sτ)
]
− xT Pi x < 0, ∀x 6= 0,∀i 6= j ∈IN ,∀S1, · · · ,Sτ ∈ Vm (24)

E (Pi)⊆L (Hi,t), ∀i ∈IN , t = 1,2, · · · ,τ (25)

Then, (i) the origin of the saturated system (1Introductionequation.1.1) with dwell-time τ is locally asymp-
totically stable; (ii) Ψ :=

⋂
i∈IN

E (Pi) is inside the DOA of (1Introductionequation.1.1).

Proof. It is sufficient to show that for every x ∈ Ψ, equations (23equation.3.23)-(25equation.3.25) im-
ply (4equation.2.4) and (5equation.2.5). To see this, consider any arbitrary x ∈ Ψ = ∩i∈IN E (Pi). From
(25equation.3.25) it follows that x is inside the polyhedral region L (Hi,1)∩ ·· · ∩L (Hi,τ) for all i ∈ IN .
This and (14Main Resultsequation.3.14), imply that for every x ∈ Ψ, Fi(x) = ∑S1∈Vm δS1Ei(x,S1), for some
δS1 ≥ 0 for each S1 ∈ Vm such that ∑S1∈Vm δS1 = 1. Since Ei(x,S1)

T PiEi(x,S1) is a convex function, we have

Fi(x)T PiFi(x) =
[
∑
S1

δS1Ei(x,S1)
]T Pi

[
∑
S1

δS1Ei(x,S1)
]

≤∑
S1

δS1

[
Ei(x,S1)

T Pi Ei(x,S1)
]
< ∑

S1

δS1(x
T Pi x) = xT Pi x

where the last inequality follows from (23equation.3.23).
Similarly, from (21Main Resultsequation.3.21) and (25equation.3.25) it is inferred that Fτ

i (x) =

∑S1,··· ,Sτ
δS1,··· ,Sτ

Eτ
i (x,S1, · · · ,Sτ), for some δS1,··· ,Sτ

≥ 0, S1, · · · ,Sτ ∈ Vm such that ∑S1,··· ,Sτ
δS1,··· ,Sτ

= 1. Then
from convexity of Eτ

i (x,S1, · · · ,Sτ)
T PjEτ

i (x,S1, · · · ,Sτ) and (24equation.3.24), we have [Fτ
i (x)]

T Pj[Fτ
i (x)]≤

∑δS1,··· ,Sτ

[
Eτ

i (x,S1, · · · ,Sτ)
T Pj Eτ

i (x,S1, · · · ,Sτ)
τ
]
< ∑δS1,··· ,Sτ

(xT Pi x
)
= xT Pi x.

Note that for every x(0) ∈Ψ, x(t) may move outside the Ψ but condition (24equation.3.24) enforce that
x(t1) (after the first switching) be inside µΨ for some µ ∈ (0,1). In addition, condition (23equation.3.23)
ensures that x(t) remains inside the union of ellipsoids ∪i∈IN E (Pi) for all t. This, (24equation.3.24) and
(25equation.3.25) together, imply that x(t) is inside polyhedral regions

⋂
i∈IN

(
L (Hi,1)∩ ·· · ,L (Hi,τ)

)
for

all t ∈ Z+ and hence LDI representation of (21Main Resultsequation.3.21) is valid at all times.

Remark 1. In the limiting case where τ = 1, σ(·) becomes an arbitrary switching function and the condi-
tions of Theorem 2thm.2 retrieves the stability results appeared in the literature for saturated systems under
arbitrary switching (see e.g. (Benzaouia et al., 2004; Lu and Lin, 2008)).
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Remark 2. Let Āi = Ai +BiKi. Then, the conditions of Theorem 2thm.2 in the absence of saturation become

ĀT
i Pi Āi−Pi ≺ 0, ∀i (26)[
Āτ

i
]T Pj

[
Āτ

i
]
−Pi ≺ 0, ∀i 6= j (27)

which is the stability condition for (unsaturated) switched system appeared in (Geromel and Colaneri, 2006).
Thus, there indeed exist Pi � 0 and Hi,1, · · · ,Hi,2τ−1 that satisfy (23equation.3.23)-(24equation.3.24) so long
as LMI (26equation.3.26)-(27equation.3.27) for system in the absence of saturation has a solution. This also
signifies assumption (A2).

3.1. LMI Formulation and Enlarging the Domain of Attraction
The estimate of DOA of system (1Introductionequation.1.1) obtained from Theorem 2thm.2 is the inter-

section of ellipsoidal sets E (Pi). To enlarge the DOA, one must chose auxiliary matrices Hi,1, · · · ,Hi,τ and
Pi’s such that the volume of ∩i∈IN E (Pi) is maximized. This can be done by solving the following constrained
optimization problem:

max
Pi�0,Hi,1,··· ,Hi,τ

volume E (Pi)

s.t. (23equation.3.23),(24equation.3.24) and (25equation.3.25).

In the sequel, we describe how to transform the above optimization problem into Linear Matrix Inequal-
ities (LMIs) that can be efficiently solved with LMI solvers (see e.g. (Grant and Boyd, 2011)).

The key point for this conversion is that Et
i (x,S1, · · · ,St) for given S1,S2, · · · ,St ∈Vm, is an affine function

of variable Hi,1x, · · · ,Hi,tx. This means that Et
i (x,S1, · · · ,St) can be rewritten as

Et
i (x,S1, · · · ,St) = Θi,0(S1, · · · ,St)x+Θi,1(S1, · · · ,St)Hi,1 x+ · · ·+Θi,t(S1, · · · ,St)Hi,t x (28)

where Θi,·(S1, · · · ,St)’s are only functions of Ai,Bi,Ki (see e.g. (17Main Resultsequation.3.17)-(20Main
Resultsequation.3.20) for the expressions of Θi,0(S1,S2), Θi,1(S1,S2), Θi,2(S1,S2) for different values of S1
and S2). Hereafter, the dependence of Θi,t on (S1, · · · ,St) is dropped for notational convenience unless
needed.

Now, to transform (24equation.3.24) into an LMI constraint, pre- and post-multiply it by P−1
i . It follows

that

xT
[
P−1

i (Θi,0 + · · ·+Θi,τHi,τ)
T Pj(Θi,0 + · · ·+Θi,τHi,τ)P−1

i −P−1
i

]
x < 0, ∀x 6= 0,∀i 6= j (29)

Let Qi = P−1
i ,Yi,1 = Hi,1P−1

i , · · · ,Yi,τ = Hi,τP−1
i . Then, (29LMI Formulation and Enlarging the Domain of

Attractionequation.3.29) is equivalent to(
Θi,0Qi + · · ·+Θi,τYi,τ

)T Q−1
j

(
Θi,0Qi + · · ·+Θi,τYi,τ

)
−Qi ≺ 0, ∀i 6= j

Utilizing the Schur complement, this can be converted into[
Qi ∗

Θi,0Qi + · · ·+Θi,τYi,τ Q j

]
� 0, ∀i 6= j (30)

where ∗ denotes the transpose of the off-diagonal term and (30LMI Formulation and Enlarging the Domain
of Attractionequation.3.30) is now an LMI in terms of the variables Qi,Q j,Yi,1,Yi,2, · · · ,Yi,τ . Using the same
procedure, constraint (23equation.3.23) is equivalent to[

Qi ∗
Θi,0Qi +Θi,1Yi,1 Qi

]
� 0, ∀i (31)
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Constraint (25equation.3.25) is also equivalent to the following LMI constraints (Hu et al., 2002a):

E (Pi)⊆L (Hi,t) ⇔
[

1 Y j•
i,t

∗ Qi

]
� 0, ∀ j ∈ {1, · · · ,m} (32)

where Qi = P−1
i ,Yi,t = Hi,tQi, and Y j•

i,t is the j-th row of Yi,t .
Finally, by using tr(P−1

i ) as a measure of size of the ellipsoid E (Pi), the following corollary provides an
approach for enlarging the DOA of (1Introductionequation.1.1).

Corollary 1. Suppose that for some τ ≥ 1, there exist matrices Qi � 0 and Yi,1, · · · ,Yi,τ for i = 1,2, · · · ,N
such that the following linear matrix inequalities (LMIs) hold:

maxQi�0,Yi,1,··· ,Yi,τ ∑
N
i=1 tr(Qi)[

Qi ∗
Θi,0(S1)Qi +Θi,1(S1)Yi,1 Qi

]
� 0, ∀i,∀S1 ∈ Vm

[
Qi ∗

Θi,0(S1, · · · ,Sτ)Qi + · · ·+Θi,t(S1, · · · ,Sτ)Yi,τ Q j

]
� 0, ∀i 6= j,∀S1, · · · ,Sτ ∈ Vm

[
1 Y j•

i,t
∗ Qi

]
� 0, ∀i,∀t ∈ {1, · · · ,τ},∀ j ∈ {1, · · · ,m}

(33)

Then, the origin of switched system (1Introductionequation.1.1) is locally asymptotically stable with dwell-
time τ and Ψ =

⋂
i∈IN

E (Q−1
i ) is the estimate of DOA. The auxiliary matrices Hi,t are obtained from Hi,t =

Yi,tPi with Pi = Q−1
i .

Remark 3. In the optimization problem (33equation.3.33), ∑i tr(Qi) is optimized over all possible matrices
Hi,t , · · · ,Hi,τ , including Hi,t = Ki for all i ∈ IN and for all t = 1, · · · ,τ . Hence, the resulting DOA is no
smaller than the one tangential to the sides of the unsaturated region, i.e. LK := ∩i∈IN{x : ‖Kix‖∞ ≤ 1}.

Remark 4. Any feasible solution of optimization problem (33equation.3.33) with dwell-time τ , is also a
feasible solution for optimization problem (33equation.3.33) with any τ̄ ≥ τ . This means that Ψ(τ) is a DOA
of (1Introductionequation.1.1) with dwell-time τ̄ ≥ τ and Ψ(τ)⊆Ψ(τ̄).

4. Numerical Example
The example considered is a single-input saturated switched system, taken from (Chen et al., 2012),

with IN = {1,2}, A1 =
[−0.7 1.0
−0.5 −1.2

]
, A2 =

[ 0.26 −1.0
1.7 −1.5

]
, B1 = [1, 0]T , B2 = [0, −1]T , K1 = [1.1759, 0.1089],

K2 = [1.5114,−0.7765].
As LMIs (26equation.3.26)-(27equation.3.27) admit a solution with τ = 2, the system is asymptotically

stable with dwell-time τ = 2 and thus assumption (A2) is satisfied for any τ ≥ 2. It can also be shown that the
system is unstable under arbitrary switching and hence the methods proposed for arbitrary switched systems
are not applicable for this example. The intention here is to compute an estimate of DOA of the system from
Corollary 1cor.1 for different values of dwell-time τ ≥ 2 and compare them with the results presented in
(Chen et al., 2012).

The solution of the optimization problem (33equation.3.33) with τ = 2 are P1 =
[

1.0839 1.5333
∗ 3.1411

]
,

P2 =
[

1.3408 −0.7720
∗ 1.2585

]
, H1,1 = [0.8898,0.7467], H1,2 = [0.5660,1.5560], H2,1 = [1.1270,−0.8560], H2,2 =

−[0.3050,0.4333]. Figure 1Illustration of Ψ = E (P1)∩E (P2) for τ = 2: E (P1) ⊆L (H1,1)∩L (H1,2) and
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Fig. 1. Illustration of Ψ = E (P1)∩E (P2) for τ = 2: E (P1)⊆L (H1,1)∩L (H1,2) and E (P2)⊆L (H2,1)∩L (H2,2);

E (P2) ⊆ L (H2,1)∩L (H2,2); figure.caption.1 shows the corresponding ellipsoidal sets E (P1) and E (P2)
and the polyhedral regions L (H1,1),L (H1,2),L (H2,1),L (H2,2). Note that E (P1) ⊆ L (H1,1)∩L (H1,2)
and E (P2) ⊆ L (H2,1) ∩L (H2,2) as imposed by (32LMI Formulation and Enlarging the Domain of
Attractionequation.3.32). The DOA together with a sample trajectory of the system starting from x(0) on
the boundary of Ψ = E (P1)∩ E (P2) under a periodic switching sequence is shown in Fig. 2(left) State
trajectory from x(0) = (0.2763,−0.6918) on the boundary of Ψ under a period switching with σ(0) = 2,
tk+1− tk = 2,∀k; (right) The Lyapunov function V (x(t)) and the monotonically decreasing sequence V (x(tk))
at switching times.figure.caption.2. Note that x(t) may move out of Ψ (see x(1),x(3) /∈Ψ in Fig. 2(left) State
trajectory from x(0) = (0.2763,−0.6918) on the boundary of Ψ under a period switching with σ(0) = 2,
tk+1− tk = 2,∀k; (right) The Lyapunov function V (x(t)) and the monotonically decreasing sequence V (x(tk))
at switching times.figure.caption.2) but x(t) remains in E (P1)∪E (P2) at all times. The corresponding Lya-
punov function V (x(t)) = x(t)T Pσ(t)x(t) is also shown in this figure. Again, V (t) is not monotonically
decreasing with respect to t but V (x(tk)) (the points marked with “o”) defines a monotonically decreasing
sequence and thus V (t)→ 0 as t→ ∞.
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−0.5
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0
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time (t)

V
(x

(t
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1

2

time (t)

σ(
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V(x(t))
V(x(t

k
))

Fig. 2. (left) State trajectory from x(0) = (0.2763,−0.6918) on the boundary of Ψ under a period switching with
σ(0) = 2, tk+1− tk = 2,∀k; (right) The Lyapunov function V (x(t)) and the monotonically decreasing sequence

V (x(tk)) at switching times.
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4.1. Comparison with Other Methods
As a comparison, the authors of (Chen et al., 2012) use an LDI-based method to obtain an estimate of

DOA of (1Introductionequation.1.1). They show that if there exist λ ∈ (0,1), µ ≥ 1, Pi � 0 and Hi for each
i ∈IN such that

[(Ei,Hi(x,S))]
T Pi [(Ei,Hi(x,S))]≤ λ x>Pi x, ∀i ∈IN ,∀S ∈ Vm (34a)

Pi � µ Pj, ∀(i, j) ∈IN×IN (34b)

E (Pi)⊆L (Hi), ∀i ∈IN (34c)

Then, equilibrium solution x = 0 of (1Introductionequation.1.1) is locally asymptotically stable with dwell-
time τ ≥ b− ln µ

lnλ
c. For a fixed λ , conditions (34aComparison with Other Methodsequation.4.34a) and

(34cComparison with Other Methodsequation.4.34c) can be easily converted into LMIs using the same pro-
cedure developed in Section 3.1LMI Formulation and Enlarging the Domain of Attractionsubsection.3.1
and optimized such that the size of E (Pi)’s are maximized. Then, an admissible choice of µ that satisfies
(34bComparison with Other Methodsequation.4.34b) is µ = maxi, j

λmax(Pi)
λmin(Pj)

. The estimate of DOA of this
method is the largest norm-2 ball Br = {x : ‖x‖ ≤ r} ⊆ ∩i∈IN E (Pi) such that if x(0) ∈ Br then x(t) ∈
∩i∈IN E (Pi) for all t ∈ Z+. An admissible choice of r that guarantees this condition is r = mini∈IN

1√
λmax(Pi)

.

For the example considered in this section, the smallest dwell-time τ that results in a feasible solution for
the optimization problem (34Comparison with Other Methodsequation.4.34) is τ = 5. The resulting DOA,
denoted by Br, is shown in Fig. 3Comparison of DOA for τ = 5: Br ⊂Ψ = E (P1)∩E (P2).figure.caption.3
and compared with the DOA obtained from Corollary 1cor.1 with τ = 5.

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

x1

x
2

 

 

Br

E(P1)
E(P2)

Fig. 3. Comparison of DOA for τ = 5: Br ⊂Ψ = E (P1)∩E (P2).

Method of (Chen et al., 2012) Corollary 1cor.1
τ Area(Br) # LMI Area(Ψ) # LMI
2 - 6 1.372 16
3 - 6 3.308 26
4 - 6 5.788 44
5 1.131 6 7.143 78
8 3.331 6 10.316 532

Table 1. Computational results
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Computational results for different values of τ are also presented in Table 1Computational
resultstable.caption.4. These results include the size of DOA and the total number of LMIs involved in
each method.

From Table 1Computational resultstable.caption.4, it can be seen that the proposed LDI approach is less
conservative, in terms of both minimal dwell-time needed for stability and the size of DOA, than the LDI
method of (Chen et al., 2012). This is mainly because the variables Hi,1, · · · ,Hi,τ gives us more freedom
to characterize the polytopic representation of the solution of system (1Introductionequation.1.1) and hence
enable us to find a larger estimate of DOA. Of course, this is possible at the expense of a more computational
effort as the number of LMI constraints involved in (33equation.3.33) increases exponentially with τ .

5. Conclusion
This paper proposes a sufficient condition for asymptotic stability of discrete-time switched systems

under dwell-time switching and in the presence of saturation nonlinearity. This condition is shown to be
equivalent to linear matrix inequalities (LMIs). As a result, the estimation of the domain of attraction is
formulated into an optimization problem with LMI constraints. Through numerical examples, it is shown
that our results are less conservative than the others, in terms of both minimal dwell-time needed for stability
and the size of the obtained domain of attraction.
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