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Abstract - In this paper a control strategy, based in both sliding modes and differential flatness is proposed to regulate
the vertical motion of a flexible cable. The dynamics of the system are represented with a simplify model, that consists
in three lumped masses linked by springs. Due to the differential flatness property that the system present, a variety of
control schemes can be applied, particularly: sliding modes. By using this scheme, the aim of control is to achieve an
output trajectory tracking without oscillations, employing only position measurements and approximations of the time
derivatives. The system performance is validated by some numerical simulations.
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1. Introduction
Flexible cables are a kind of special engineering structures. They are used in overhead transmission lines

with high voltage, aerial cables for transport, elevator, cranes, as actuators in some robotics joints, planar
robots , large span structures in bridges and other civil engineering structures (Ahmadi-Kashani, 1989),
(Sahay, 1989). When we move the cable on its vertical axis (as in the case of elevators or cranes) (K. Jun-
Koo, 2000), undesirable vibrational movement can be appeared, due to the elasticity property that the cable
present. This condition affect in a great manner when a task of tracking an specified trajectory has to be
accomplished. In this case those oscillations need to be avoided.

The concept of differential flatness was firstly addressed by Fliess and colleges (Fliess, 1995). A system
is called differentially flat if we can find a set of output variables, called flat outputs, such that the states
and the variable inputs can be determined from these variables (without integration). This property allows
us to find a differential parametrization of the inputs, states and outputs in terms of the flat outputs and its
time derivatives. An interesting property that the linear time-invariant systems posses is that the concept
of controllability and the differential flatness coincides. Another advantage about the differential flatness
property is that due to the structure of the differential parametrization the not modeled dynamics, as well, as
the nonlinear effects can be considered as disturbances.

The flexible cable can be modeled as a set of springs and masses. This simplified dynamic model is dif-
ferentially flat and since this property is analogue to the controllability, a great variety of control approaches
can be applied in order to achieve a tracking trajectory. Among the great diversity of control schemes that can
be applied to the system, the sliding modes technique stands out because of its simplicity of implementation
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and easy understanding. Another desire characteristic of this approach is that is robust to a wide range of per-
turbations, parameter variations and model uncertainties. Sliding mode control was developed in the former
Soviet Union. Names like Emelyanov, Utkin, Itkis are associated with earlier developments of the theory
(Emelyanov, 1967), (Itkis, 1976), (Utkin, 1992). The basic idea behind the sliding mode control is to applied
a discontinuous feedback control law or a switching strategy to the input of the system in order to drive the
trajectory system to a desire surface, called sliding surface, in the state space. The historical areas of ap-
plications of sliding mode control are: Aerospace systems (L. Xiangdong, 2011), Robotics (L.M. Capisani,
2010), Automotive system (Hyunsup and Hyeongcheol, 2011) and Power Electronics (A. Franco-Gonzáles,
2007) .

In this contribution the flatness of flexible cable and slide mode control strategy for tracking trajectory
tasks is considered. The paper is organized as follows: in Section 2 the dynamic model and differential
flatness are described. The design of the sliding mode controller for the system is developed in Section 3. In
Section 4 the corresponding numerical simulations are presented. Concluding remarks ends the contribution.

2. Modeling and Control of a Flexible Cable
2.1. Flatness of a Flexible Cable

In this section a model of a flexible cable is considered. The model can be represented by an equivalent
system that consist of 3 lumped masses linked by springs, see Figure 1. The first mass is directly actuated
by the input force, while the remaining are under-actuated. The mathematical model is represented by the
following dynamics equations

Fig. 1. Cable flexible equivalent system

mcÿ1 =mcg− k(y1− y0)+ k(y2− y1) (1)

mcÿ2 =mcg− k(y2− y1)+ k(y3− y2) (2)

mcÿ3 =mcg− k(y3− y2) (3)

where mc is the mass of a section of the cable, k denote the stiffness coefficient of the springs, and yi, i =
0,1,2,3 is the vertical displacement of a section of the cable.

It is considered that the control input is the force applied to variable y0, that is u f = ky0. The controlled
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output is the vertical motion of the third mass y3. System (1)-(3), can now be expressed as

ÿ1 =g− k
mc

y1 +
1

mc
u f +

k
mc

(y2− y1) (4)

ÿ2 =g− k
mc

(y2− y1)+
k

mc
(y3− y2) (5)

ÿ3 =g− k
mc

(y3− y2) (6)

Following (Fliess, 1995), it can directly shown that, for system (4)-(6), the flat output is given by the
displacement of the third mass, that is y3 = F , and a differential parametrization can be obtained

y3 =F (7)

y2 =
mc

k
F̈− mc

k
g+F (8)

y1 =
m2

c

k2 F(4)+3
mc

k
F̈ +F−3

mc

k
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u f =
m3

c

k2 F(6)+5
m2

c

k
F(4)+6mcF̈ + kF−6mcg (10)

that yields to the equilibrium relations

y3 = F (11)

y2 = F− mc
k g (12)

y1 = F−3 mc
k g (13)

u = kF−6mcg (14)

From (4)-(6), we can also arrive to the following set of relations for the higher order derivatives of the flat
output, note that they appears in terms of the state variables

F =y3 (15)

Ḟ =ẏ3 (16)

F̈ =
k

mc
y2 +g− k

mc
y3 (17)

F(3) =
k

mc
ẏ2−

k
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ẏ3 (18)
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m2
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ẏ2 +2
k2

m2
c

ẏ3 (20)

These relations are useful to write the feedback controller. From (10), the system is equivalent to the
input-output model of the form

F(6) =
k2

m3
c

u f −5
k

mc
F(4)−6

k2

m2
c

F̈− k3

m3
c

F +6
k2

m2
c

g (21)
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2.2. Problem Formulation
Now, we propose a rest-to-rest maneuver for the flat output nominal trajectory F∗(t), starting at an initial

position F∗(tinitial) = F̄ and resting at a final one F∗(T ) = Ff inal . It is desirable that the position of the last
mass arrives to its final destination without oscillations.

3. A Slide Mode Control
Equation (21) can be formulated as a simplified perturbed model for the underlying flexible cable system,

that is

F(6) =
k2

m3
c

u+δ (t) (22)

Here δ (t) represent a function that depends on the states and the higher order derivatives of the flat output.
The not modeled dynamics, and the unknown external perturbations (that may affect the system performance)
are denoted by η(t). The uncertain terms are lumped into this time-varying function represented by

δ (t) =−5
k

mc
F(4)−6

k2

m2
c

Ḟ− k3

m3
c

F +6
k2

m2
c

g+η(t) (23)

Due to the flatness property of the system, a control scheme based on sliding modes (SM) is feasible, see
(Sira-Ramirez, 1992),(A. J. Koshkouei, 2005). To this end we first define, for dynamics (22), the following
sliding surface

σ(t) =(F(5)−F(5)∗)+κ1(F(4)−F(4)∗)+κ2(F(3)−F(3)∗)+κ3(F̈− F̈∗)+κ4(Ḟ− Ḟ∗)

+κ5(F−F∗) (24)

where κ1,κ2,κ3,κ4,κ5 are a set of real constants, that are selected in such a way, that the polynomial

p(s) = s5 +κ1s4 +κ2s3 +κ3s2 +κ4s+κ5 (25)

is Hurwitz. Now, we compute the time derivative of σ(t), that lead us to the expression

σ̇(t) =
k2

m3
c

u f +δ (t)−F(6)∗+κ1(F(5)−F(5)∗)+κ2(F(4)−F(4)∗)+κ3(F(3)−F(3)∗)+κ4(F̈− F̈∗)

+κ5(Ḟ− Ḟ∗) (26)

Then, the sliding mode control is specified as follows

u f =−
m3

c

k2 Wsign(σ(t)), W > 0 (27)

and, in order to reduce the chattering effect in (26), the control law (27), is proposed as

u f =−
m3

k2 W
σ(t)

‖σ(t)‖+µ
(28)

By substituting (28) in (26), we arrive to

σ̇(t) =−W
σ(t)

‖σ(t)‖+µ
+ψ(t) (29)
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Fig. 2. Flexible cable performance without control

where ψ(t) is defined as

ψ(t) = δ (t)−F(6)∗+κ1(F(5)−F(5)∗)+κ2(F(4)−F(4)∗)+κ3(F(3)−F(3)∗)+κ4(F̈− F̈∗)+κ5(Ḟ− Ḟ∗)

Here µ is a small positive scalar parameter with a value selected as µ = 0.0005, and W must be chosen
such that

W > sup
t
‖ψ(t)‖ (30)

this condition must holds, in order to ensure that the tracking error tends to zero as time evolves. For the
sliding surface σ(t) = 0, the set of gains κi were chosen such that the polynomial (25) match with the desire
polynomial

q(s) = (s+ p)(s2 +ζ ωs+ω
2)2 (31)

4. Numerical Simulation
In this section numerical simulations of the system are presented. The flexible cable parameters used

for the simulation are: the mass m = 0.1[kg], the stiffness coefficient k = 1[N/m] and g = 9.81[m/s2]. We
establish a rest-to-rest reference F∗, for the flat output F = y3, it was set as a smooth polynomial interpolation
between initial and final desired values for the last mass. The initial conditions (11)-(14), at t = 0[s], are
the following: ȳ3 = F̄ = 6[m], ȳ2 = 5.0190[m], ȳ1 = 3.0570[m], ū f = 0.1140[N]. The reference trajectory at
t = 0[s] was set to be the position F∗ = 6[m] then, in t = 1[s], the system was moved to the position F∗ = 2[m]
accomplish the reference in 3 seconds. At t = 4[s] the system remains in this reference position for a period
of 1 second, then in t = 5[s] the system was moved to the initial position F∗ = 6[m] in 3 seconds.

Figure 2 shows the performance of flexible cable without control, where the position y0 follow a reference
trajectory specified by y∗0(t) = F∗(t)−5.8860[m]. When the task is completed, we can observe undesirable
oscillations in positions y1, y2 and y3 .

Now the control law is simulated, in order to show its effectiveness. The design coefficients for the
sliding surface κi were set as coming from the desired characteristic polynomial q(s) (31), selected by means
of the parameters: ω = 5, p = 5, ζ = 1. The controller gain was elected as W = 5000. The initial conditions
for the system, at t = 0[s], are the following: y3(0) = F(0) = 6.05[m], y2(0) = 4.95[m], y1(0) = 2.95[m] and
u f = 0[N]
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Fig. 3. Tracking performance of flexible cable with slide mode controller based in differential flatness
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Fig. 4. a) Tracking performance of the slide mode controller based in differential flatness b) Tracking error signal

The time evolution of the desired position F∗(t), as well as, the controlled trajectory of the flat output F
are shown in Figure 4(a). It becomes evident the suitable tracking quality of the scheme, where, the position
of the last and under-actuated mass, carried out the trajectory tracking task without oscillations.

In Figure 4(b), the tracking error eF = F∗−F is depicted. Here we can observe that the position error is
restricted to a small vicinity of the origin and, in the steady state, its uniformly bounded.

The control input force applied to the system is depicted in Figure 5(a) and the sliding surface in Figure
5(b)

5. Conclusion
In this contribution the control of the position of a flexible cable was addressed. A simplified model

was proposed that is based in three lumped masses linked with springs, where the second and third of the
masses are under-actuated. Based on the flatness property that the system present, a sliding mode control is
proposed in order to achieve the trajectory tracking minimizing the oscillations that the flexible cable could
present, principally in the last under-actuated mass.
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Fig. 5. a) Control input b) Sliding surface
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