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Abstract - High-speed navigation of autonomous Unmanned Ground Vehicles (UGVs) in rough unknown terrains 

requires the detection and identification of the terrain in order to make effective navigation decisions. This paper 

investigates a geometrical approach to identifying terrain based on its roughness using the terrain elevations from a 

point cloud generated using a 3D camera. This roughness, called the Roughness Index (RI), is used to identify 

different terrains by overlaying the terrain with a grid map and using the standard deviation of the point cloud 

elevations in each grid cell. The experimental testing and results of this terrain identification technique are presented 

as determined from field experiments using an experimental UGV test platform on rough outdoor terrains. 
 

Keywords: Terrain classification, unmanned ground vehicles, terrain identification, terrain roughness 

detection. 

 

 

1. Introduction 
Unmanned Ground Vehicles (UGVs) are becoming increasingly prevalent in everyday life as these 

complex systems are being used in applications including surveillance, military, law enforcement, 

industrial hauling, and search and rescue. In order for these systems to navigate effectively in any 

environment they must be able to detect the terrain and react accordingly. 

This paper investigates the challenge of terrain identification for use in making navigation decisions. 

Previous work in this area has investigated binary classification to solve this problem where terrain is 

classified into traversable and non-traversable regions (Kim D., et al., 2007).  

The problem with binary approaches is that the degree of traversability is not determined (e.g. 

pavement and gravel are both traversable, but pavement is more traversable). Reactive multi-class terrain 

classification attempts to solve this problem by classifying terrain into multiple categories (e.g. grass, 

gravel) based on the vibrational acceleration imparted by the terrain using trained machine learning 

techniques such as Neural Networks (Collins E. G. and Coyle E. J., 2008), Principle Component Analysis 

(DuPont E. M., et.al, 2006), and Support Vector Machines (Weiss C., et al., 2007).With reactive 

techniques the terrain must be encountered before the classification is made, and if the UGV is traveling 

at high-speed this could cause damage. To identify terrain before encountering it predictive multi-class 

terrain classification has been investigated. These approaches use machine learning to train visual 

classifiers to identify terrain based on appearance using standard cameras (J. Kim, et al., 2009), laser 

scanners (Lu L., et al., 2011), and stereo cameras (Talukder A., et al., 2002). These predictive techniques 

have been improved even further by incorporating the reactive vibrational classifications to train the 

visual classifiers both offline (Komma P., et al., 2009), and online (Brooks C. A. and Iagnemma K., 

2012).  

The problem with these machine learning classifiers is that they may perform poorly if a new type of 

terrain is encountered, and that training can take substantial time. Geometric based terrain classification 

approaches attempt to solve this by classifying terrain based on its geometric appearance from a point 

cloud generated by 3D cameras (e.g. stereo cameras, 3D laser scanners) (Howard A. and Tunstel E., 

2006). A promising approach proposed by El-Kabbany and Ramirez-Serrano (2010) identified terrain 

using terrain roughness detection; improvements on their approach are proposed by Wilson et al. (2012). 

This paper further explores the approach developed by Wilson et al. (2012) through detailed real-world 
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experimental testing and implementation of the terrain roughness detection technique called the 

Roughness Index (RI). This is done on rough outdoor terrain using an experimental UGV platform. 

 

2. Theory 
Traversing a given a priori unknown terrain effectively with a UGV requires the perception of the 

terrain in front of the UGV. In this article this is accomplished through geometric perception of the terrain 

using a range sensor (e.g. stereo camera, 3D laser scanner) to produce a point cloud; experimental tests in 

this article used a MESA SwissRanger SR4000 3D camera. As a 3D point cloud itself is not directly 

useful for navigation decision making, this data must be processed to identify the terrain based on its 

geometrical properties. For this purpose the Roughness Index (RI) was developed. The RI is used to 

identify the perceived roughness of a terrain using a 3D point cloud; the RI is defined as follows: 
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where    is the sample standard deviation of the point elevations for a sample of size  ,    is a point 

elevation in the sample,  ̅ is the sample mean of the point elevations, and   is the ground clearance of the 

UGV. 

The reason for the inclusion of the ground clearance   in Equation (1) is for the comparison of 

roughness relative to the capabilities of the UGV. While mathematically the RI has a range of [   ), 
where 0 is a perfectly smooth terrain and   is the roughest possible terrain, in practice it can be generally 

visualized that any terrain with      is smooth, while any terrain with      is rough. The selection of 

1 as rough terrain is arbitrary, though mathematically it means that ~32% of the terrain point elevations 

are at least one ground clearance greater than the mean (which is a significant elevation change). 

To demonstrate how the RI works a simulated example of a UGV identifying a sigmoid terrain is 

presented. In this example the ground clearance   of the vehicle was set to      , while the terrain 

elevation change was       . The surface of the sigmoid terrain being identified is shown in Figure 1, 

while the sigmoid terrain profile is compared to the vehicle in Figure 2. 

 

 
Fig.1. Sigmoid surface. 
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Fig. 2. Sigmoid Compared to UGV. 

 

To obtain a point cloud that represented this terrain 200 random points were placed on the surface of 

the sigmoid (Figure 3 & Figure 4) and from these the RI was calculated. For these points the mean terrain 

point elevation was        and the RI was     . From these numbers it can be seen that a terrain with an 

     would be quite rough supporting the proposal that a value of 1 can be considered rough terrain for 

visualization purposes. 

 

3. Implementation 
When implementing the RI for the purpose of terrain identification on a UGV one possibility is to use 

the entire point cloud to calculate a single RI for the entire area being captured by the 3D camera. The 

problem with this is that different areas of the terrain that are being captured may have dramatically 

different roughness. In the case of the MESA SwissRanger SR4000 the range of the camera is ~10m; this 

is a long distance where roughness may not be uniform. To improve the terrain identification the terrain 

can be divided into a 2D grid map where the dimensions are the horizontal distance in front of the camera, 

and the horizontal distances to the left and right of the camera. For each grid cell the RI can be calculate 

individually using the mean of the terrain elevation points within each cell. 

 

 
Fig. 3. Point cloud. 
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Fig. 4. Point cloud: side view. 

 

For this 2D grid approach to implementing the RI it is important to take into account the number of 

terrain elevations points that are sampled in each grid cell. Since the RI is calculated as the sample 

standard deviation of the terrain point elevations it is important that this sample standard deviation be 

representative of the population standard deviation of the grid cell. For this purpose assume that the 

terrain point elevation population follows a normal distribution in each grid cell. Since each grid cell 

contains a sample of the terrain point elevation population consider the t-distribution that describes the 

distribution shape as a function of the sample size. As the sample size approaches   the t-distribution is 

equal to the normal distribution, and therefore at a sufficiently large sample size the t-distribution is a 

good approximation of the normal distribution. A common arbitrarily selected value for this 

approximation is a sample size of 30 (McClave J. T. and Sincich T., 2009). Therefore in this article it is 

assumed that if the sample size of the terrain elevation points in a grid cell is     then the sample 

standard deviation is considered to be a sufficient approximation of the population standard deviation. In 

the implementation of the RI in a 2D grid map any cell with less than 30 points is labeled as invalid. 

Given that it is assumed that     terrain elevation points are needed in a grid cell for it to be valid, it 

is important to consider the size of the grid cells. If the grid cells are made too small most of the grid cells 

will have     terrain elevation points and will be invalid. On the other hand, if the grid size is too large 

then smaller details about the terrain will be lost. It is therefore important to select an appropriate grid cell 

size based on the cameras resolution. To observe the effect of grid size on the RI grid, consider the terrain 

presented in Figure 5. Using a SR4000 3D camera a point cloud of the terrain was obtained (Figure 6). 

 

 
Fig. 5. Complex terrain. 
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Fig. 6. Complex terrain point cloud. 

 

From the point cloud in Figure 6 RI grids for various grid sizes were calculated. These grid sizes were 

      ,      ,      ,      , and      as shown respectively in Figure 7 through Figure 11.  

 

 
Fig. 7. Grid size 0.05m. 

 
Fig. 8. Grid size 0.1m. 

 
Fig. 9. Grid size 0.2m. 

 
Fig. 10. Grid size 0.5m. 
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Fig. 11. Grid size 1.0m. 

 

Observing Figure 7, that has the lowest grid size, it is clear that due to the point density of the camera 

there are limited areas of the image which have     points; therefore, other than a couple high 

roughness obstacles (trees) only about 1 to      of the terrain has any RI associated with it. In Figure 8, 

with a      grid size, the range at which there is RI information has been extended to about 1.5 to     , 

and the individual obstacles (trees) are still clearly visible. When the grid size reaches      in Figure 9 

the trees have begun to be lumped together into larger areas of high RI, though at the same time the 

patches of trees are still separated into two areas. This grid size has extended the range of RI identified 

areas to about 2.5 to     . When the grid size is increased yet further to      as shown in Figure 10 the 

trees have become a single area of high roughness and all fine details have been lost. The advantage to 

this grid size is that the range of the RI grid has been increased to about     . With the largest grid 

(Figure 11) it can be seen that the RI scores have become generalized and there are no areas which have 

less than a 0.2 RI score. With this large grid size there are no fine details remaining about the terrain;  

however, the range of areas with RI scores is the largest (extending the full 5m).  

From Figure 7 to Figure 11 it can be seen that it is important to have a compromise between RI grid 

range and the resolution of the RI grid. If the grid size is too small there will be very few areas with an RI 

since     points fall in the majority of the grid cells. If the grid cell size is too large fine details about 

the terrain are lost, and the areas that do exist become more generalized as they are taking the standard 

deviation of points over a larger area. For the purpose of the testing in this article a grid cell size of 0.2m 

was selected for use. 

 

4. Experimental Platform 
For the experimental testing of the RI in outdoor terrains on a moving UGV an experimental test 

platform had to be developed. This custom test platform is shown in Figure 12.  

 

 
Fig. 12. Experimental test platform. 
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This vehicle was custom made for the AR
2
S Laboratory running a multitude of sensors for terrain 

identification and vehicle state estimation. The state of the vehicle (position, velocity, orientation) is 

estimated using an IMU, GPS, and wheel encoders running various algorithms including a Kalman filter 

for positioning data. The SwissRanger SR4000 mounted on the front of the vehicle is the 3D camera 

which captures the point cloud. The Arduinos handle the motor control and the sensor data acquisition 

while the Shuttle PC collects, processes, and stores the experimental data. The UGV was driven by 

remote control where the XBee wireless transmitter received the motion commands. This vehicle had a 

ground clearance of      . 

 

5. Experimental Testing and Results 
During the experimental testing the UGV was driven at a speed of ~1.5m/s. During the testing the 

point cloud of the terrain was captured and stored in real time along with the vehicle state estimates in 10 

to     tests. For the testing the UGV was driven through a variety of terrains including roots, pavement, 

gravel, and grass (Figure 13 to Figure 16).  

After the data was gathered it was processed in the lab to produce the RI in a graphical RI grid map. 

The processing time of the point clouds for each run into RI grids took approximately     of the time 

each experiment was run (i.e. 25s test run takes 5s to process and plot). This means this terrain 

identification technique is suitable for real-world applications since it is able to run in real-time. The 

results for each of the terrains are shown below (Figure 17 to Figure 20). 

 

 
Fig. 13. Root terrain. 

 

 
Fig. 14. Pavement terrain. 

 
Fig. 15. Gravel terrain. 

 
Fig. 16. Grass terrain. 

 

From Figure 17 through Figure 20 it can be seen that the Root terrain (Figure 17) is the roughest RI 

grid (as expected), while the other three terrains are more similar in appearance. It can be noted that the 

pavement (Figure 18) and gravel (Figure 19) terrains are almost identical in appearance, which is to be 

expected since they are both relatively smooth and hard surfaces. It should be mentioned that especially in 

the gravel terrain there are some isolated areas of high roughness. These areas are attributed to artifacts 

introduced by the parking lot lighting. It was noticed that streetlights caused errors in the SwissRanger 

SR4000 cameras point cloud; presumably the wavelength of the light being output by the lights is the 
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same as that of the SR4000’s TOF sensors. The grass terrain (Figure 20) was slightly different than the 

pavement and gravel, having areas of moderate roughness (RI 0.5). This is because the grass, instead of 

the ground underneath, is being detected by the SR4000 and the point cloud is producing a rougher 

appearing terrain than actually exists. This is an issue with all current sensors and deformable 

terrain/vegetation. Current sensor technology and techniques have a very difficult time dealing with 

obstructions and terrain such as tall grass.  

Addressing the most dynamic terrain again, the root terrain (Figure 21), observe a comparison of 

different areas of the terrain in Figure 22. The first area labelled Area 1 corresponds to a large horizontal 

root. As expected, in the RI grid this is detected as a feature. Area 2 is a large wide collection of roots that 

is also detected properly in the RI grids as a large area of high roughness. Finally, Area 3 is a smoother 

area of dirt that is also correctly identified in the RI grid. From this it is concluded that the RI is 

performing properly and correctly identifying areas of high and low roughness. 

 

 
Fig. 17. Root RI grid. 

 

 
Fig. 18. Pavement RI grid. 

 
Fig. 19. Gravel RI grid. 

 
Fig. 20. Grass RI grid. 
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Fig. 21. Labeled root terrain.  

Fig. 22. Labeled RI grid. 

 

6. Conclusion 
This paper presented a geometrical terrain identification approach, the Roughness Index (RI), that 

identified terrain based on the roughness of the terrain using the point cloud of a 3D camera sensor. 

Techniques for implementing the RI on real world terrains using a grid map were investigated. 

Comparisons of different grid size selections and their effect on the RI grid map were discussed. It was 

found that as the grid size was increased the effective range of the 3D camera was increased (due to the 

sparsity of points at longer ranges); however, this range increase came at the cost of losing terrain details. 

It was therefore concluded that a compromise must be selected between RI grid range and the detailed 

resolution of the grid. 

This technique was also implemented on an experimental UGV platform for real-world testing.  

During the testing the RI was computed for a variety of terrains (grass, gravel, pavement, roots). It was 

found that the RI performed well at correctly identifying areas of high and low roughness. It was also 

concluded that the algorithm was fast enough to run in real time for high-speed vehicles, meaning it can 

be used in real-world applications. 

Further work in this area includes expanding this roughness detection to account for terrain 

deformability (the technique proposed here assumes all terrain is rigid), and extrapolating terrain 

roughness to distant terrain using terrain appearance in a camera image (since 3D point cloud generating 

sensors are either short range or have low point density at long ranges). 
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