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Abstract - A model for the locomotion of simple mechanical devices comprising spheres linked by jointed rods under-
going cyclic shape changes in an ideal fluid near an infinite wall is investigated. Our analysis begins with a first-order
approximation to the kinetic energy for a sphere near a wall, derived by (Milne-Thomson, 1968). Numerical sim-
ulations of Lagrange’s equations are presented that demonstrate motion towards the wall for these swimmers. The
presence of the wall breaks a symmetry, and this compensates for the isotropic, rather than asymmetric, added masses
of the spheres. Evidence is presented that a geometric phase may be relevant, despite a highly nonlinear and asymmetric
Lagrangian.
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1. Introduction
(Purcell, 1977) investigated hydrodynamic locomotion of microorganisms swimming in Stokes flow,

stating what is now referred to as the “Scallop Theorem.” This says that an isolated microorganism enjoy-
ing only one internal degree of freedom cannot swim when viscous forces dominate. An analogous result
applies to an isolated swimmer in an infinite ideal fluid when the system is initially at rest; this analogy is a
consequence of parallels in the mathematical structure of ideal flow and Stokes flow detailed in (Kelly et al.,
2012)

The locomotion of swimmers with additional internal degrees of freedom has been studied extensively.
For example, (Radford, 2003), (Kanso et al., 2005), and (Ross, 2006) each demonstrated that a planar swim-
mer comprising two or more links can propel itself in an ideal fluid through a combination of cyclic shape
changes and added-mass effects, generating geometric phase relative to a connection on a principal bundle.
Meanwhile, (Koiller et al., 1996) showed that a pair of scallops can exploit their hydrodynamic coupling in
Stokes flow to propel themselves as a team in a mathematically analogous fashion.

This work considers the locomotion of swimmers comprising spheres and jointed rods in ideal flow near
an infinite wall. It differs from previous work in two important ways. First, the added mass of a sphere —
unlike that of an ellipse — is isotropic, so asymmetric added-mass effects are eliminated. Second, the pres-
ence of the wall breaks a symmetry that, under the assumptions made in this paper, would otherwise render
impossible the locomotion of the swimmers considered here. The locomotion of the swimmers considered
in this paper appears to be solely accounted for by wall effects.

2. Model and Kinematics
The left panel of Figure 1 depicts a sphere in an inviscid fluid near an infinite wall, the building block on

which our articulated swimmers are modeled. The middle panel depicts a scallop, and the right panel depicts
a two-jointed scallop. These are comprised of spheres and ideal rods and will be described in turn.
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Fig. 1. A sphere near a wall (left); a scallop (middle); a two-jointed scallop (right)

2.1. Sphere in an Invisicid Fluid near a Wall
For the sphere near the wall, let a denote the radius, m the mass, and r = (x,y) its position relative to an

inertial frame fixed in the wall. Let m f denote the mass of the displaced fluid. In §18.61 of (Milne-Thomson,
1968), a first-order approximation to the kinetic energy of the sphere is derived as

T := 1
2(A(y) ẋ2 +B(y) ẏ2), (1)

where

A(y) := m+ 1
2 m f (1+ 3

16
a3

y3 ), (2)

B(y) := m+ 1
2 m f (1+ 3

8
a3

y3 ). (3)

This result is obtained by solving Laplace’s equation for the velocity potential subject to appropriate
boundary conditions for the case of two spheres moving along their line of centers, and then using the method
of images to obtain the result with a single sphere near an infinite wall. Note that the energy is independent
of x, as it must be due to symmetry. Furthermore, it is highly nonlinear in y, and the vertical speed ẏ is given
more energetic weight than its horizontal counterpart ẋ. Furthermore, Milne-Thomson demonstrates that the
sphere is

repelled from the wall when ẋ2−2ẏ2 < 0, (4)

attracted towards the wall when ẋ2−2ẏ2 > 0. (5)

2.2. Single-jointed Scallop as Three Spheres
The middle panel of Figure 1 depicts a scallop modeled by three spheres. Each sphere has radius a

and mass m, and each displaces mass m f of fluid. Relative to an inertial frame fixed in the nearby wall, the
position of the central (or body) sphere is denoted r0. The centers of the distal spheres are joined to the center
of the body sphere by rigid, infinitesimally thin, massless rods of length l ≥ 2a. Such a rod will henceforth
be referred to as an ideal rod. These ideal rods do not interact with the fluid or make any contribution to the
dynamics. The shape angle of the scallop, its joint angle, is denoted by φ . The orientation of the scallop,
denoted θ , is defined to be zero when the vertical line through r0 is the perpendicular bisector of the line
segment joining r1 to r2. With r0(t) := (x(t),y(t)), the geometry of Figure 1 implies that

x1(t) = x(t)+ l sin(θ(t)− φ(t)
2 ), (6)

y1(t) = y(t)− l cos(θ(t)− φ(t)
2 ), (7)

x2(t) = x(t)+ l sin(θ(t)+ φ(t)
2 ), (8)

y2(t) = y(t)− l cos(θ(t)+ φ(t)
2 ). (9)

As soon as l and the control φ(t) are prescribed, the motion of the system is completely determined by
x(t),y(t), and θ(t).
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2.3. Two-jointed Scallop as Three Spheres
A more general swimmer, in which there are two joint angles, φ1 and φ2, is depicted in the right panel of

Figure 1. With the aid of two — rather than one — shape variables, more sophisticated gaits may be studied.
An ideal rod of length 2l1 passes through the center of the body sphere, making angle θ relative to the
horizontal. Each end of this rod is attached via a swivel joint to another ideal rod of length l2, the end of
which is affixed at the center of the corresponding distal sphere. To permit the distal spheres to rotate freely
while rendering collisions impossible, the parameters l1 and l2 are required to satisfy the inequalities

l1 ≥ 2a and a≤ l2 ≤ l1−2a. (10)

(Without these restrictions, the single-jointed scallop considered earlier is recovered as the special case
l1 = 0, in which case the single joint angle is φ = π−φ1+φ2.) With r0(t) := (x(t),y(t)) as before, it follows
from the geometry of Figure 1 that

x1(t) = x(t)− l1 cosθ(t)− l2 cos(θ(t)+φ1(t)), (11)

y1(t) = y(t)− l1 sinθ(t)− l2 sin(θ(t)+φ1(t)), (12)

x2(t) = x(t)+ l1 cosθ(t)+ l2 cos(θ(t)+φ2(t)), (13)

y2(t) = y(t)+ l1 sinθ(t)+ l2 sin(θ(t)+φ2(t)), (14)

and the motion of the system is completely determined by x(t),y(t), and θ(t) once values for l1, l2 are
specified and the controls φ1(t) and φ2(t) are prescribed.

3. Dynamics and Control
This work employs the hydrodynamic decoupling assumption, which says that interactions among the

spheres are ignored; each sphere is treated as if its only interaction were with the wall.

3.1. Lagrangian Dynamics
Under the decoupling assumption, the Lagrangian L is the sum of the kinetic energies of the spheres,

L =
2

∑
i=0

1
2(A(yi) ẋ2

i +B(yi) ẏ2
i ), (15)

and the dynamics are governed by Lagrange’s equations,

d
dt

∂L

∂ q̇i −
∂L

∂qi = 0, q := (x,y,θ). (16)

As is customary, let px := ∂L /∂ ẋ, py := ∂L /∂ ẏ, and pθ := ∂L /∂ θ̇ denote the conjugate momenta in-
duced by the Lagrangian. Since the Lagrangian is cyclic in x, i.e. ∂L /∂x = 0, the conjugate momentum px

is conserved. In fact, its conservation serves as a useful check on the numerical integration of Lagrange’s
equations.

3.2. Control
The shape angles for both the scallop and two-jointed swimmer are prescribed by open-loop controls,

the details of which are discussed in Section 4.
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4. Numerical Simulation
With L given as in (15), and with the controls described in this section, Lagrange’s equations (16) for

both the single-jointed and two-jointed scallops were numerically simulated using Mathematica’s NDSolve
ODE solver. Initial velocities were determined programatically by requiring the vanishing of the system’s
net initial momentum. That is, ẋ(0), ẏ(0), and θ̇(0) are found by requiring them to satisfy the system of
equations

px(y,θ , ẋ, ẏ, θ̇) = 0, (17)

py(y,θ , ẋ, ẏ, θ̇) = 0, (18)

pθ (y,θ , ẋ, ẏ, θ̇) = 0, (19)

at t = 0, with y = y0, and θ = θ0. This ensures that any locomotion arises from the dynamics, rather than the
initial conditions.

4.1. Single-Jointed Scallop
In the simulation m f was chosen to be large relative to m (in particular, m f := 10m) to ensure sufficient

momentum transfer from the fluid to the scallop.1 The scallop’s joint is prescribed by the open-loop control

φ(t) := φmin +(π−φmin) · 1+sin t
2 , (20)

where φmin := 2arcsin(a
l ) is the minimum physically-realizable joint angle, occuring when the distal spheres

are tangent. This control produces sinusoidal motion of the joint angle, with a minimum value of φmin and a
maximum value of π , where the joint is “wide open.”

Figure 2 depicts the configuration of the scallop at equally spaced time intervals t = 0, 1
3 tmax,

2
3 tmax, tmax.

Comparison of the central sphere in the leftmost panel (at t = 0) with that in the rightmost panel (at t = tmax)
shows that the scallop has managed to inch its way towards the wall.
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Fig. 2. Snapshots of scallop at equally spaced times

Figure 3 depicts the overall orientation of the scallop, revealing that the scallop is rotating, in the net,
along its trajectory. This may also be seen in Figure 2, where the first panel shows the scallop in orientation
π/3, and the last panel shows the scallop in orientation π/2 (approximately). Figure 4 depicts the trajectory
of the central sphere of the scallop, which is seen to undergo a swinging motion. Although its x coordinate

1The full set of simulation parameters, or indeed the Mathematica notebooks, are available from the authors upon request.
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oscillates, Figure 2 shows that this is balanced by oscillation of the distal spheres as well, so that the conjugate
momentum px is conserved. Indeed, this is consistent — via Noether’s theorem — with the fact that the
system exhibits a translational symmetry along the x axis.
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Fig. 3. Orientation of scallop
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Fig. 4. Trajectory y(x) of the scallop’s central sphere,
beginning at the disk and ending at the triangle

It is natural to ask how the initial orientation θ0 affects the scallop’s subsequent motion. To investigate
this, the simulation was repeated for the initial values θ0 = 0,π/3,2π/3, and π , all other parameters being
left unchanged. By symmetry, one expects corresponding motions for negative values of θ0. Since the
vertical motion is that which is interesting, a plot of y(t) for each of these four cases is shown in Figure
5. The case θ0 = π/3, in the second panel, seems to be most successful in generating vertical motion. (In
fact, this motivated the choice θ0 = π/3 used throughout the rest of this section.) That this value is the most
successful of these four cases may be explained in part by examining the initial configuration of the scallop,
depicted in the first panel of Figure 2, in which one of the distal spheres is hanging low, closer to the wall
than any of the spheres would be in the cases θ0 = 0,2π/3, or π . Together with the y−3 dependence of the
energy (1) by way of equations (2) and (3), this seems to explain why θ0 = π/3 is energetically favorable for
vertical motion.
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Fig. 5. Vertical position of scallop’s central sphere for initial orientations θ0 = 0, π
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4.2. Two-jointed Scallop
The preceding analysis was carried out for the two-jointed scallop depicted in Figure 1. In order that the

differences in behavior between the two cases is isolated to the dynamics rather than the choice of parameters,
the numerical values for the two-jointed scallop were chosen to agree, insofar as possible, with those in the
single-jointed scallop previously considered.

The values of a, l1, and l2 chosen satisfy the inequalities (10) imposed on the two-jointed swimmer, so
the distal spheres are guaranteed to not collide with each other or with the central sphere. The shape angles
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φ1 and φ2 may therefore be actuated arbitrarily. The following open-loop control was utilized, driving the
joint angles periodically, although out of phase with one another:

φ1(t) := sin(t), (21)

φ2(t) := sin(t)cos(t). (22)

The resulting gait in shape space is that of a figure eight.
The configuration of the two-jointed scallop at equally spaced time intervals t = 0, 1

3 tmax,
2
3 tmax, tmax is

depicted in Figure 6. As before, comparison of the leftmost panel (t = 0) with the rightmost panel (t = tmax)
shows that, with some effort, the swimmer inches its way towards the wall. Figure 7 depicts the overall
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Fig. 6. Snapshots of two-jointed scallop at equally spaced times

orientation of the swimmer. Unlike the case of the single-jointed scallop in Figure 3, the orientation of its
two-jointed counterpart is primarily oscillatory, although its average orientation angle does increase over a
longer time scale. Finally, the trajectory y(x) is depicted in Figure 8. Its complexity is explained by the fact
that two — rather than one — shape variables are present.
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Fig. 7. Orientation of two-jointed scallop
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Fig. 8. Trajectory y(x) of the two-jointed scallop’s
central sphere, beginning at the disk and ending at

the triangle

Figure 9 depicts the effect of the initial orientation on the subsequent evolution of y(t), the vertical
coordinate of the central sphere. Similar reasoning as in the scallop explains why the initial angle θ0 = π/3
seems to be the most effective of those studied in generating vertical motion. The vertical motion of the
two-jointed scallop is somewhat less pronounced than that of the scallop, in part due to the fact that the other
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distal sphere is further from the wall than in the scallop. Finally, the complicated gait of the two-jointed
scallop is reflected by the jagged evolution of y(t) in Figure 9. (Contrast this with y(t) for the scallop, as
depicted in Figure 5.)
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5. Locomotion and Geometric Phase
Because the Lagrangian is not invariant under vertical translations, trajectories cannot be horizontal with

respect to a mechanical connection (see (Kelly and Murray, 1995) and (Marsden, 1992)). Nevertheless, it is
intriguing to note that the locomotion presented above seems to exhibit qualities consistent with the presence
of an underlying geometric phase, in the sense that the final displacement and reorientation resulting from
cyclic shape changes is independent of the speed at which those shape changes were executed. To verify this,
multiple identical simulations were performed differing only in the time parameterization of the control law.
For each value of τ ∈ {1,10,100}, the substitution t 7→ t/τ was made in the control laws and the maximum
simulation time was adjusted to τ tmax. The trajectory and orientation plots for each case is displayed in
Figure 10.
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Fig. 10. Evidence for a geometric phase in the two-jointed swimmer
(note the different time scales)

Although this particular procedure represents a linearly scaled reparameterization, it does intriguingly
suggest that there may be an interpretation whereby the dynamics are captured by some notion of connection.
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6. Conclusions and Future Work
We have demonstrated that the presence of a stationary wall in an ideal fluid can enable the nearby

locomotion of a jointed body lacking sufficient shape dependence in its effective inertia to propel itself
otherwise. We have observed, furthermore, that while the wall’s role is one of symmetry breaking, its
presence does not rule out the presence of a geometric phase underlying the body’s motion. The following
list offers suggestions for possible future work.

• The validity of the hydrodynamic decoupling assumption and the regime in which the approximation
(1)-(3) is valid should be investigated.

• Modifying the Lagrangian to account for first-order interactions between the spheres seems advisable,
as does including second-order terms describing the interaction of the spheres with the wall.

• Further investigations into the possibility of a geometric phase hinted at in the last section should be
performed.

• The phenomenon of damping-induced self-recovery was recently discovered in (Chang and Jeon,
2013). The model in this paper includes no viscous effects, and it would be of interest to investigate
whether the aforementioned phenomenon would influence the trajectories of the swimmers considered
here, if our model were adjusted to accommodate viscous drag.
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