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Abstract - We consider the continuous model of a mobile slender mechanism. Rigid body degrees of freedom and
deformability of the system are coupled through a Lagrangian weak form that includes control inputs to achieve forward
locomotion and shape adaptation. The forward locomotion and the shape adaptation are associated to the coupling
with a substrate that models a generic environment in which the robot could be deployed. The assumption of small
deformations around rigid body placements allows to adopt the floating reference kinematic description. The weak
form is naturally associated to an approximate solution technique based on Galerkin projection on the linear mode
shapes of the Timoshenko beam model, that is adopted to describe the body of the robot. Simulation results illustrate
the tracking problem when the mechanism is deployed on a smooth surface.
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1. Introduction
Over the last few decades, researchers have studied the bio-mechanics of living organisms with hyper re-

dundant morphologies (Kang et al., 2013; Chirikjian and Burdick, 1995; Atakan et al., 2005). Multi segment
and flexible slender robots are generally inspired by biological characteristics in living organisms, and find
application in several fields such as health (Menciassi and Dario, 2003; Dario et al., 2003; González-Mora
et al., 1999), industrial smart health monitoring (Huston et al., 2004; Esser and Huston, 2005), energy and
energy harvesting (Sugawara-Narutaki, 2013; Stevens and Mecklenburg, 2012), to name a few. A Cosserat
solid approach has been adopted in (Boyer et al., 2012) to model the dynamics of several kinematically lo-
comoted bio-inspired slender systems. Shape adaptation and path tracking with multi-link manipulators is
presented in (Bopearatchy and Hatanwala, 1990; Nanayakkara et al., 2000; Moallem et al., 1997; Xu et al.,
2001), where high accuracy path tracking is achieved with high speed systems.

Multibody mobile robots with large number of degrees of freedom can be modeled as one dimensional
continua with local Euclideian structure (beam models), due to the slenderness of the system. The vibrations
of a flexible manipulator based on the linear Euler-Bernoulli beam model are discussed in (Ower and Van de
Vegte, 1987). In this paper we present a model for the forward locomotion and shape adaptation with a slen-
der hyper-redundant mechanism. The mechanism is modeled as a Timoshenko beam in plane motion with
natural (force) boundary conditions, which allows a rigid body motion to the system, kinematically described
by three degrees of freedom. We assume that the characteristic length of the robot is small as compared to
the radius of curvature of the substrate, therefore adopting small deformations kinematics around rigid body
placements. This leads to the use of the floating reference frame description (Shabana, 2010, Chapter 5). By
reproducing the scenario of a slender robot deployed in a generic environment, the shape-tracking problem is
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posed in terms of coupling with a substrate. This coupling is realized through a distributed system of spring
elements that, in terms of feedback, are represented by a distributed force. The forward locomotion is ex-
pressed in terms of the rigid body degrees of freedom tracking a moving point on the substrate. The forward
locomotion can therefore be described as a path following problem by employing a Frenet frame intrinsic
description of the substrate as a parametrized curve in the two-dimensional environment (Altafini, 2002).
The forward locomotion and shape adaptation problems are coupled by posing the problem in a distributed
control framework with minimization of a suitable action functional based on the Lagrangian function of the
system. A numerical solution based on the Galerkin projection on the linear mode shapes is obtained.

2. Kinematics
We consider the planar motion of a slender robot, with a flexible body modeled as a beam. The material

body in the reference configuration has the form of a prism P0 of E , where E is the Euclideian three-
dimensional space, with associated space of translations U . The reference configuration P0 is referred to
the material coordinates X = {X1,X2,X3} along the orthonormal Cartesian basis {E1,E2,E3}. The cross
section of the beam-like body in the reference configuration is the rigid surface spanned by E2 and E3. For
an undeformed length `, the coordinate X1 ∈ [0, `] is the locus of the centroids of the cross sections, and E1
spans the tangent space to the axis (support) of the beam described by such coordinate.

We want to describe the motion of the robot as composed by a rigid body placement and by a small
deformation about the rigid body placement. Therefore we adopt the concept of floating frame that is exten-
sively described in (Shabana, 2010, Chapter 5), and used in (Zehetner and Irschik, 2005) to formulate the
problem of vibrations of beams caused by a prescribed rigid motion. The rigid body placement is described
by the change of coordinates x(X, t) = d(t)+R(θ(t))(X−δ`E1)

x(X, t) = d(t)+R(θ(t))(X−δ`E1) (1)

that maps X ∈P0 to x ∈PR, where PR is the region corresponding to the rigid body placement. The
rigid change of coordinates is as usual composed of a rigid body displacement d that represents the time-
varying position of a point in PR with respect to the origin of the fixed reference frame, and by the
action of the rotation tensor R(θ) defined by (see for example (Chadwick, 1998)) R(θ) = E3 ⊗ E3 +
cosθ (E1⊗E1 +E2⊗E2)− sinθ (E1⊗E2−E2⊗E1) where ⊗ is the tensor product defined by the pro-
jection (u⊗ v)w = (v ·w)u for u, v, w in U , with “·” indicating the associated inner product. Moreover,
δ ∈ [0,1] defines the point on the axis that is left unaltered by the action of R, so that the rigid body motion
is composed of a translation d and of a rotation around an axis passing through the point with position δ`E1
with respect to the left boundary of the undeformed body.

The small deformation about the rigid body placement PR is described by a map χ : PR →P that
takes points x and maps them to the point χ(x, t) in the current configuration P as χ(x, t) = x+U(x, t),
where U is a small deformation, that consistently with the the linearized planar Timoshenko beam theory
(Timoshenko, 1974) is given by U(x, t) = (u(x1, t)−X2ψ(x1, t))e1 +w(x1, t)e2, where ei = REi are rotated
orthonormal basis vectors (floating reference frame (Shabana, 2010)) that are used to describe the rigid body
placement PR, and xi = x · ei. From (1) we have

x1 = x · e1 = d · e1 +(X1−δ`)e1 ·RE1

= d · e1 +(X1−δ`)E1 ·RTRE1 = d · e1 +(X1−δ`) (2)

x2 = x · e2 = d · e2 +X2e2 ·RE2 = d · e2 +X2 (3)

where we have used the property R−1 = RT (orthogonality of R) and the definition of transpose v2 ·Rv1 =
v1 ·RTv2 for any two vectors v1 and v2.
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In the floating reference frame, the material time derivative is performed by keeping x constant (Zehetner
and Irschik, 2005), and therefore PR is treated as the reference configuration with respect to the deformation.
This approximation holds due to the hypothesis of small deformations around the rigid body placement. The
velocity of a point χ in P is obtained as its material time derivative, that is therefore given by

χ̇= ḋ+ θ̇W(x−d)+ U̇ = ḋ+ θ̇W((X1−δ`)e1 +X2e2) (4)

where W is the skew-symmetric tensor W = e2⊗ e1− e1⊗ e2 which allows to describe the time derivative
of unit basis vectors rotating with angular velocity θ̇ as ėi = θ̇Wei; this relation has bees used to derive the
third therm on the right hand side of (4). The action of the skew symmetric tensor W on the floating basis
vectors allows to write ẋ as ẋ = ḋ+ θ̇((X1−δ`)e2−X2e1).

In the floating reference frame the material derivative of U is given by U̇ = (u̇−X2ψ̇)e1+ ẇe2+ θ̇WU =
(u̇−X2ψ̇− θ̇w)e1+(ẇ+ θ̇(u−X2ψ))e2. The time derivative if the map χ can therefore explicitly be written
as

χ̇= ḋ+
(
u̇−X2ψ̇− θ̇(w+X2)

)
e1 +

(
ẇ+ θ̇(u−X2ψ +X1−δ`)

)
e2 (5)

Within the hypothesis of small deformations we consider the linearization (I+∇xU)T (I+∇xU) ' I+
∇xU+∇T

x U, so that the Green-Saint-Venant strain ε reduces to the symmetric part of ∇xU, and the gradient
is represented in operator form as ∇x =

∂

∂x j
⊗ e j. Therefore we obtain ε= sym∇xU = (u′−X2ψ ′)e1⊗ e1 +

1
2(w

′−ψ)(e2⊗ e1 + e1⊗ e2), where (·)′ means differentiation with respect to x1.

3. Closed Loop System
In this section we derive the weak form of the governing equations of a slender robot with kinematics de-

scribed in the previous Section. The weak form allows to state the well posedness of a distributed parameters
control problem with inputs suitably included in the variational form.

The kinetic energy of the system is then given by K = 1
2
∫
P ρχ̇ · χ̇dP . Given the geometry of P , we

consider the Cartesian product structure P =A × [0, `], where ` is the undeformed length of the beam and A
is the two-dimensional Euclideian point space defining a rigid cross section. The axis of the beam is therefore
spanned by the coordinate x1 ∈ [d1−δ`,d1 + `(1−δ )], whereas x2 and x3 span the cross section. Therefore
the integral in P is accordingly decomposed as

∫
P =

∫ d1+`(1−δ )
d1−δ`

∫
A . We introduce di = d · ei, that are the

components of d in the body reference frame. We now operate the change of coordinate x1(X1)= d1+X1−δ`
(see (2)) (with unit Jacobian, as expected being a rigid change of coordinate), and define the material de-
scriptions of different scalar fields involved in the integration u?(X1, t) := u(x1(X1), t) = u(d1 +X1− δ`)
(w? and ψstar are introduced similarly through w and ψ). Since the origins of coordinates {X2,X3} are the
centroids of the cross section (whose locus describes the axis of the beam) we have

∫
A ρX2dA = 0, and∫

A ρ(X2)
2dA = I, where I is the moment of inertia about X3 (normal to the plane of motion). We introduce

the nondimensional kinematic variables X1/`, u?/`, and w?/` with respect to the length `, and the nondimen-
sional forces bN`/kAG, bQ`/kAG, bM/kAG, and fi/kAG. Since no confusion arises, we indicate henceforth
the nondimensional fields with the same symbols previously used for the the corresponding dimensional
ones. Let z = (d1,d2,θ ,u?,w?,ψ?) be the state vector. With the introduction of the nondimensional param-
eters

α1 =
Y
kG

, α2 =
I

A`2 , t̄2 =
ρ`2

kG
(6)

where t̄ is a characteristic time, we rewrite the kinetic energy in nondimensional form as K =
1
2
∫ 1

0 żTM(z)żdX1 =
1
2
∫ 1

0 Mi j(z)żiż jdX1, where we have adopted the convention of summing repeated indexes
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in their respective ranges. The 6×6 matrix M is given by

M =



1 0 −q2 1 0 0
0 1 q1 0 1 0
−q2 q1 α2(1+ψ?)2 +q2

1 +q2
2 −q2 q1 α2

1 0 −q2 1 0 0
0 1 q1 0 1 0
0 0 α2 0 0 α2

 (7a)

with q1 = d1 + u? + X1 − δ and q2 = d2 + w?. We define the collection of strain components ε̄ =
(u?′,w?′ − ψ?,ψ?′), the 3× 3 matrix K = diag(α1,1,α1α2), and the collection of forces and torques
τ = ( f1, f2, f3,b1,b2,b3), where fi are duals of rigid body degrees of freedom d1, d2, θ , and bis are du-
als of deformation fields u?, w?, ψ?, so that the nondimensional potential energy of the system is rewritten
as V =

∫ 1
0
(1

2 ε̄
TKε̄−τTz

)
dX1 =

∫ 1
0
(1

2 Ki jε̄iε̄ j− τizi
)

dX1, where the work term τizi is transported under the
integral by dividing by the nondimensional length of the domain, that in this case is 1.

In order to obtain the weak form of the evolution equations we introduce the Lagrangian function
L (z, ż, ε̄,b,τ ) = K (z, ż)−V (z, ε̄,τ ) where, with abuse of notation, we have indicated with ˙{·} the mate-
rial time derivative applied componentwise to the collection of states. Here the external forces are interpreted
as control inputs to drive the corresponding dual kinematic quantities to desired values. The (strong) govern-
ing evolution equations are the cofactors of the variations z̃, τ̃ , that describe the evolution of the minimizers
of the action functional

∫ t2

t1 L dt between two fixed points t1 and t2. Minimization of the action functional cor-
responds to the stationarity of its gradient (Gâteaux derivative) along the variations of its arguments. Here we
consider the weak form, that is built by considering the cofactors of all arguments of the Lagrangian function;
the weak form is suitable for numerical solution. After time integration by parts the stationarity of the gra-
dient of the action functional gives

∫ t2
t1

∫ 1
0

(
−z̃kMk j z̈ j− z̃k

∂Mk j
∂ zi

żiż j + z̃k
1
2

∂Mi j
∂ zk

żiż j−Ki j ˜̄εiε̄ j + z̃iτi

)
dX1dt = 0,

where consistently with the Hamilton-Kirchhoff variational principle we have assumed that all fields are
assigned at times t1 and t2, which implies that the boundary terms arising from the integration by parts in
time are zero (since the corresponding variations of the fields are zero whenever the fields are assigned). By
introducing

C(z, ż) =



0 0 q̇2 + θ̇q1 0 0 0
0 0 −q̇1 + θ̇q2 0 0 0

q̇2 + θ̇q1 −q̇1 + θ̇q2 −q̇1q1− q̇2q2−α2ψ̇?ψ? q̇2 + θ̇q1 −q̇1 + θ̇q2 α2θ̇ψ?

0 0 q̇2 + θ̇q1 0 0 0
0 0 −q̇1 + θ̇q2 0 0 0
0 0 α2θ̇ψ? 0 0 0

 (8a)

By exploiting the arbitrariness of t1 and t2 the weak form of the problem is rewritten as

0 =
∫ 1

0

(
z̃iMi j(z)z̈ j + z̃iCi j(z, ż)ż j +Ki j ˜̄εiε̄ j− τiz̃i

)
dX1

=
∫ 1

0

(
z̃TM(z)z̈+ z̃TC(z, ż)ż+ ˜̄εTKε̄− z̃Tτ

)
dX1 (9)

We consider the distributed coupling with the substrate to be given by normal actions with respect to the
axis of the beam, therefore dual of the transverse displacement w. This implies that b1 = b3 = 0 (no axial
distributed forces and no distributed couples). Therefore the external forces vector is redefined as τ =
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( f1, f2, f3,0,b2,0), with fis applied at x1(X1 = 1). The distributed parameters control problem is stated
as follows: find a feedback τ (z,zd) ∈ L2(0,1) that stabilizes z ∈ R×R×R× S1(0,1) around the desired
trajectory zd according to (9) for all z̃, where S1 is the usual Sobolev space of functions with first derivative
square integrable in (0,1).

4. Galerkin Projection
A finite dimensional projection of the system (9) is obtained by a separation of variables with respect

to space and time. Since the rigid body displacement degrees of freedom are functions of time only the
separation of variables for d and θ is trivial. The deformation fields are instead decomposed as u?(X1, t) =
ūT(X1)a(t), w?(X1, t) = w̄T(X1)b(t), and ψ?(X1, t) = ψ̄T(X1)c(t), where ū = (ū1, . . . , ūn), w̄ = (w̄1, . . . , w̄n),
and ψ̄= (ψ̄1, . . . ψ̄n) are n−dimensional sets of spatial basis functions, and a = (a1, . . . ,an), b = (b1, . . . ,bn),
and c = (c1, . . . ,cn) are time dependent vectors of amplitudes. We introduce the 6×n+3 matrix z̄ (collection
of basis functions) and the n+3 dimensional collection of amplitudes ζ

z̄ =


I3×3 03×n

ūT(X1)
03×3 w̄T(X1)

ψ̄T(X1)

 , ζ = (d1,d2,θ ,a,b,c)

so that z= z̄ζ and z̃= z̄ζ̃. Therefore (9) must hold for all ζ̃, which implies the reduced order system evolution
µM(ζ)ζ̈+µC(ζ, ζ̇)ζ̇+µKζ = F

(
ζ, ζ̇,zd, żd

)
of the 3n+3 coefficients ζ. The 3n+3×3n+3 operators µM,

µC, and µK and the 3n+3 load vector F are given by

µM(ζ) =
∫ 1

0
z̄TM(z̄ζ)z̄dX1, µC(ζ, ζ̇) =

∫ 1

0
z̄TC(z̄ζ, z̄ζ̇)z̄dX1, µK =

∫ 1

0

(
03×3+3n

03+3n×3 K̄

)
dx1

K̄ =

 α1ū′Tū′ 0n×n 0n×n

0n×n w̄′Tw̄′ −w̄′Tψ̄
0n×n −ψ̄Tw̄′ α1α2ψ̄

′Tψ̄′+ ψ̄Tψ̄

 , F
(
ζ, ζ̇,zd, żd)= ∫ 1

0
z̃Tϕ

(
z̄ζ, z̄ζ̇,zd, żd)dx1

Basis functions ū, w̄, and ψ̄ are obtained by solving the eigenvalues problem associated with a planar Timo-
shenko beam. Details about analytic expressions can be found in (Fattahi and Spinello, 2013).

Let η(s) = η1(s)E1+η2(s)E2 be the position in the global frame of a point on the substrate in which the
mechanism is deployed, parametrized by the arclength s. Moreover, let p(d,X1) = x−X2e2 = d+(X1−1)e1
be the point on the undeformed axes and g be a vector with constant components in the body reference frame,
so that ġ = Wg. The desired state zd is defined by the list ((η(s)−g) ·e1,(η(s)−g) ·e2,θη(s),0,(η(s̄(x1))−
g) · e2,0), where tanθη = η ′2/η ′1 so that θη is the global orientation of the tangent vector η′, and s̄(x1)
is the arclength that defines a point on the curve corresponding to the solution of the minimization problem
s̄(X1) = argmins ‖p(X1)−η(s)‖, which is solved by the roots s of the scalar equation (p(x1)−η(s)) ·η′(s) =
0. Therefore the nonzero components of τ are determined by the feedback laws corresponding to a PD
controller

fi =
(
κdi (η(s)−p(1)−g)+ κ̄di

(
ṡη′(s)− ṗ(1)− ġ

))
· ei, i = 1,2 (10a)

f3 = κθ (θη(s)−θ)+ κ̄θ

(
θ
′
η(s)ṡ− θ̇

)
(10b)

b2 = κb2 (η1(x1)R1i +η2(x1)R2i−w?−g · e2) (10c)

where κdi , κθ , and κb2 are positive proportional gains, and the homonyms quantities with bar are derivative
gains; R ji are the components of the two dimensional rotation matrix; ṡ can be interpreted as the forward
speed of the system, that will be assigned as a driving parameter; and θ ′η = ‖η′′‖ is the curvature of the
substrate.
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Fig. 1. Time histories of (a) the tracking errors (η(st)−p(1, t)) · ei (solid line for i = 1 and dashed line for i = 2); (b)
the tracking error θη(st)−θ(t).

5. Simulation Results
Simulation results are obtained on a simplified system in which the time scale of body deformations is

much faster than the time scale of path following rigid body motion, which allows to discard the inertia terms
associated with u, w, and ψ; the system is then simulated by solving a static deformation problem around
rigid placements at every time step. Deformation fields are approximated with one spatial basis function
(n = 1). The gap g is set to zero, and control gains are set to κdi = 2, κ̄di = 3, κθ = 3, κ̄θ = 4, κb2 = 10. The
path η is parametrized as η = stE1 + 0.1(st − 10)2(u(st)−u(st − 10))E2, where u is the unit step function
(evaluates to 1 whenever its argument is greater than 0), and st = 0.3t. Therefore the substrate is an arch of
parabola followed by a straight line, see Fig. 2(a).

Time histories of the tracking errors (η(st)−p(1, t)) · ei and θη(st)− θ(t) are shown in Figure 1. At
time t = 333 there is the transition from parabolic to rectilinear path with consequent change of curvature
that results into the perturbation of the orientation error; this is explained by the fact that the curvature of the
path acts as a disturbance (Altafini, 2002).

Fig. 2(a) shows four snapshots of the system: the initial condition (t = 0, at the top); an intermediate state
on the parabolic portion of the path (t = 200); a state across the point st = 10 where the change of curvature
occurs (t = 320), to the final state where the head overlaps to the last defined point of the path (t = 500).
Fig. 2(b) depicts a zoom of the configuration at time t = 310, where it is shown the deformed shape that
adapts to the nonzero curvature of the path.

6. Conclusion
We have presented the weak form of a distributed parameters control system that models the path tracking

and shape adaptation of a slender mechanism coupled with a smooth surface. The floating reference frame
is adopted for the kinematics of the system, based on the hypothesis of small deformations around finite
rigid body placements. The path tracking (forward locomotion) and shape adaptation are illustrated through
simulation with a parabolic-rectilinear path.
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Fig. 2. (a) Four snapshots of the system; (b) zoom of the snapshot at t = 310 that shows the deformed shape adapted
to the nonzero curvature of the path.
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