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Coordinated Science Laboratory, ECE, University of Illinois at Urbana Champaign

1308 West Main St., Urbana, IL USA 61801
khanafe2@illinois.edu; basar1@illinois.edu

Abstract - We study an optimal control problem over a network whose nodes are infected by a virus. The infection lev-
els in the network evolve according to a nonlinear dynamical system that belongs to the susceptible-infected-susceptible
epidemiological models class. A network designer attempts to regulate the infection levels in the network via adapting
the curing rates of the nodes. We show that the optimal controller of this problem exhibits multiple switches between
the allowed actions. Further, we present a method for approximating the optimal controller while keeping the deviation
from the optimal cost at a minimum. We support our findings by numerical studies.
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1. Introduction
Different types of infections can spread rapidly over networks via local interactions among the nodes. The model-

ing and control of the spread of viruses, spam, and rumors in networks have received increased interest from researchers
in the last decade (Wang et al. 2003, Van Mieghem et al. 2009, Acemoglu et al. 2013). Besides describing the spread
of diseases among humans and animals, epidemiological models can be employed to describe the spread of viruses in
mobile and computer networks (Goffman & Newill 1967, Kephart & White 1991, Ganesh et al. 2005).

Various information spread control problems appear in the literature. Shah & Zaman (2011) study the problem
of detecting a rumor source in a network. The problem of optimal curing rates allocation was studied by Borgs et al.
(2010). A competition to limit influence between two campaigns was modeled and studied by Budak et al. (2011). For a
network of nodes running distributed linear averaging, we have studied the interaction between a network designer and
an intelligent adversary who compete to control the state of the network (Khanafer et al. 2012, Khanafer et al. 2013).

The main focus of this paper is designing optimal controllers that are capable of reducing the infection lev-
els in the network at minimum cost. To describe the infection diffusion in the network, we adopt the so-
called susceptible-infected-susceptible (SIS) n-intertwined Markov model that was recently proposed (Van Mieghem
et al. 2009, Van Mieghem & Omic 2013). We allow the network designer to control the curing rates in the network
at a predetermined cost. Optimization problems subject to this particular model were previously studied (Preciado
et al. 2013, Preciado et al. 2014, Omic et al. 2009); however, these problems were all static, and the controllers were
not allowed to vary with time. Our main contributions in this paper are as follows:

• We formulate a dynamic optimization problem to reduce the infection in the network.

• We present an approximation method that yields a near-optimal controller.

Organization
The rest of this paper is organized as follows. We introduce the SIS n-intertwined Markov model in 2. In Section

3, we introduce the optimal control problem to be solved by the network designer. An approximation method for the
optimal controller is presented in Section 4. Numerical studies are provided in Section 5. We conclude the paper in
Section 6.
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Notation and Mathematical Preliminaries
We denote the all-ones vector by 1. For notational simplicity, we will often drop the time index. For a matrix

X ∈Rn×n with real spectra, the largest eigenvalue is denoted by λ1(X). The operator diag(x1, . . . ,xn) returns a diagonal
matrix with Xii = xi, 1≤ i≤ n. The absolute value of a real scalar variable is denoted by |.|. The `∞-norm of a vector
x ∈ Rn is given by ||x||∞ = max1≤i≤n |xi|. Similarly, the `1-norm of x is given by ||x||1 = ∑

n
i=1 |xi|.

2. The n-Intertwined Markov Model
In this section, we recall the heterogeneous SIS n-intertwined Markov model (Van Mieghem et al. 2009,

Van Mieghem & Omic 2013). Consider a network of n nodes that is described by a connected undirected graph
G = (V ,E ), where V is the set of vertices, and E is the set of edges. An edge in E between two nodes i, j ∈ V
is denoted by (i, j). We denote the adjacency matrix of G by A with entries ai j ∈ R≥0, where ai j = 0 if and only if
(i, j) /∈ E . The proposed model is based on viewing each node in the network as a Markov chain with two states:
infected or cured. The curing and infection of each node in the network are described by two independent Poisson
processes with rates ui > 0 and βi > 0, respectively. The transition rates between the two states depends on the in-
fection probabilities of the neighboring nodes as well as their curing and infection rates. A mean-field approximation
is introduced in (Van Mieghem et al. 2009) in order to capture the effect of neighbors on a given node via the total
expected infection. This facilitates the derivation of an ODE that describes the evolution of the probability of infection
of node i. Let pi(t) ∈ [0,1] be the infection probability of node i at time t ∈ R≥0 and define p = [p1, . . . , pn]

T . Let
U = diag(u1, . . . ,un), P = diag(p1, . . . , pn), and B = diag(β1, . . . ,βn). The n-intertwined Markov model is then given
by

ṗ(t) = (AB−U)p(t)−P(t)ABp(t), p(0) = p0. (1)

A necessary and sufficient condition for stabilizing the state p to the origin is (Preciado et al. 2013, Khanafer et al.
2014):

λ1(AB−U)< 0. (2)

In an earlier paper (Khanafer et al. 2014), we showed that these dynamics are best-response dynamics of an
underlying concave game (Rosen 1965, Başar & Olsder 1999) played by the nodes. The game-theoretic interpretation
provides a sufficient condition for stabilizing the origin:

1
2 ∑

j 6=i
ai jβ j < δi, i = 1, . . . ,n.

This condition is obtained via the uniqueness condition for the purse-strategy equilibrium of the underlying game.
An important feature of this condition is that it is linear and can be checked in a distributed manner, which makes
it appealing for designing distributed algorithms, unlike (2) whose computation requires full information about the
network.

3. Optimal Control Problem
We now focus on designing optimal controllers for infected networks. We assume that the designer can control the

curing rates ui of all nodes; however, there is a cost associated with increasing the curing rate of any node. We assume
that there are minimum and maximum curing rates such that u≤ ui(t)≤ u, for all i. The action set of the designer can
then be written as

U = {w ∈ Rn : u≤ wi ≤ u}.

The set of admissible controls, U , consists of all functions that are piecewise continuous in time and whose range is
U . Given a time interval [0,T ], we can formally write

U = {u : [0,T ]→U | u is a piecewise continuous function of t} .

The designer aims to reduce the infection probabilities across the network, while minimizing the cost associated with
modifying the curing rates. Let c ∈ Rn

≥0 be the cost associated with the state, and let d ∈ Rn
≥0 be the cost associated

with the control. We can then write the cost functional of the designer as follows:

J(u) =
∫ T

0
[cT p+dT u]dt.
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In order to minimize the cost associated with the state, the designer must attempt to stabilize the state to the
origin. To this end, we will linearize the dynamics in (1) around the origin to obtain ṗ = (AB−U)p. Noting that
pi ∑ j 6=i ai jβ j p j ≥ 0, for all i and p ∈ [0,1]n, we conclude that (AB−D)p−PABp ≤ (AB−U)p. This serves as a
confirmation that the linear part of the dynamics is what is important when the focus is stabilization to the origin. We
will therefore work with the linearized dynamics hereinafter.

Consider the following optimal control problem:

inf
u∈U

J(u)

subject to ṗ = (AB−U)p, p(0) = p0.

The Hamiltonian associated with this problem is

H(p,q,u) = cT p+dT u+qT (AB−U)p,

where q is the costate vector. Assuming an optimal controller exists, the Pontryagin’s minimum principle (PMP)
(Liberzon 2012) states that there exists a costate vector q satisfying the following conical equations along the optimal
trajectory:

ṗ? = (AB−U?)p?, p?(0) = p0, (3)

q̇? = − ∂

∂ p
H =−(AB−U?)T q?− c, q?(T ) = 0. (4)

Further, the PMP states that the optimal control minimizes the Hamiltonian:

u? = argmin
u≤ui≤u

H(p?,q?,u),

which yields the following solution, for i = 1, . . . ,n,

u?i =

 u, di− p?i q?i < 0
u, di− p?i q?i > 0
{u,u}, otherwise

(5)

Using the continuity of q? and the terminal condition imposed on it, we conclude that u? = u1 over [T − ε,T ], where
ε > 0 is small.

4. An Approximation Result
In this problem, the PMP canonical equations (3)-(5) are intractable. In this section, we propose a method to

simplify the controller while not sacrificing optimality by much.

Theorem 1. Let u? be the optimal controller satisfying (5), and let p? and q? be the optimal state and costate vectors
satisfying (3) and (4). Consider a controller û such that û≤ ûi ≤ û, i = 1, . . . ,n. Let p̂ and J(û) be the corresponding
state and cost. Then, given an ε > 0, there exists a δ > 0 such that

max
{

u, û
}
−min{u, û}< δ =⇒ |J(u?)− J(û)|< ε.

Proof. Define Û = diag(û) and µ = max
{
|u− û|, |û−u|

}
. We can then write

˙̂p = (AB−Û)p̂

= (AB−U?)p̂+(U?−Û)p̂, p̂(0) = p0.

Note that

||(U?−Û)p̂||∞ = max
1≤i≤n

|u?i − ûi||p̂i|

≤ max
{

u, û
}
−min{u, û}= µ.
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Since p̂i ≤ 1, it also follows that
||u?− û|| ≤ µ. (6)

We also have

||(AB−U?)p1− (AB−U?)p2||∞ ≤ ||AB−U?||∞||p1− p2||∞

=

(
max

1≤i≤n
u?i +∑

j 6=i
ai jβ j

)
||p1− p2||∞

≤

(
u+ max

1≤i≤n
∑
j 6=i

ai jβ j

)
||p1− p2||∞.

Thus, the function (AB−U?)p is Lipschitz with constant L := u+ max
1≤i≤n

∑ j 6=i ai jβ j.

The solutions to (3) and (6) can be written as

p? = p(0)+
∫ t

0
(AB−U?)p?ds,

p̂ = p(0)+
∫ t

0
(AB−U?)p̂+(U?−Û)p̂ds.

We then have

||p?− p̂||∞ ≤
∫ T

0
||(AB−U?)(p?− p̂)||∞ds+

∫ t

0
||(U?−Û)p̂||∞ds

≤ µt +L
∫ t

0
||p?− p̂||∞ds.

Applying the Bellman-Grownwall Lemma to ||p?− p̂||∞, we obtain

||p?− p̂||∞ ≤ µt +µL
∫ t

0
seL(t−s)ds.

Integration by parts yields
||p?− p̂||∞ ≤

µ

L

(
eLt −1

)
. (7)

Now, consider the difference between the optimal cost, and the cost corresponding to û:

|J(u?)− J(û)| ≤
∫ T

0
|cT (p?− p̂)|ds+

∫ T

0
|dT (u?− û)|ds

≤ ||c||1
∫ T

0
||p?− p̂||∞ds+ ||d||1

∫ T

0
||u?− û||∞ds,

where the second inequality follows by Hölder’s Inequality. Using (6) and (7), and the hypothesis that µ < δ , we can
further write

|J(u?)− J(û)| ≤ µ

(
eT L−1−T L2

L2 ||c||1 +T ||d||1
)

< δ

(
eT L−1−T L2

L2 ||c||1 +T ||d||1
)
.

The theorem then follows by selecting
δ <

ε

eT L−1−T L2

L2 ||c||1 +T ||d||1
.
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Remark 1. The costate equation must be solved backward due to its end point condition. This might hinder imple-
menting u?. However, Theorem 1 provides an alternative method, where the sub-optimal cost can be at most ε away
from J(u?), without needing to solve the costate equation. For example, assume that T is small, and suppose that
u− u = 2δ . Then, by choosing û = u−u

2 1 for all t, we guarantee that |J(u?)− J(û)| < ε . Hence, by employing this
constant strategy, one can avoid all the switching that could be required by u? without losing much.

5. Simulation Results
In this section, we demonstrate that the optimal controller (5) can exhibit multiple switches. Consider the

network shown in Fig. 1, and let d = [1,1,10,1,1]T such that node 3 has a high cost on control. Also, let
p(0) = [0.1,0.01,0.9,0.01,0.01]T , where we assigned a high probability of infection to node 3. Let u = 0.1, u = 1,
T = 100, and c = 1. Unity infection rates were assigned to all the nodes, i.e, βi = 1 for all i. The edge weights ai j were
generated randomly.

1 2 3

4

5

Fig. 1. An infected graph with node 3 having high probability of infection and high cost on control.

Fig. 2 shows the state of the network above after implementing the controller given in (5). Note that u3 = u
throughout [0,T ], because controlling this node is expensive. Nevertheless, although the neighboring nodes have low
initial probability of infections, the optimal controller intelligently increases the curing rates of these nodes, who enjoy
low control cost, in order to help cure node 3. It is interesting to note that all the controllers, except u3, exhibit multiple
switches between u and u.
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Fig. 2. State and optimal control of a network with a highly infected node whose control cost is high.

6. Conclusion
In this paper, we formulated an optimal control problem that allows the network designer to regulate the infection

levels in the network at minimum cost. Using Pontryagin’s minimum principle, we derived the optimal controller in
terms of the state and costate vectors. We showed that this controller can exhibit multiple switches between the extreme
values of the control. Further, we presented an approximation method that allows the designer to use a constant control
strategy without compromising optimality much.
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