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Abstract - This paper presents a method of using an improved version of the Max-Min Ant Colony Optimization 

(ACO) algorithm for use in dynamic global robot path planning. A modified Bug2 algorithm was used to determine 

the initial best path on a map. After running the Max-Min ACO algorithm to find the optimal path, the path was 

checked to see if it crossed any previously unknown obstacles, and if so the route was recalculated from the obstacle 

to the goal. The previously found best path was saved to help subsequent runs find the optimal solution faster. This 

algorithm was tested using simulations, and it was determined that it performed well in finding the average shortest 

path. It also resulted in greatly reduced processing times.  

 

Keywords: Robot, path planning, Ant Colony Optimization (ACO), optimization. 

 

 

1. Introduction 
Global path planning is an important part of mobile robotic systems. For a robot to be autonomous it 

must be able to determine how to travel from point A to point B. However, there may be multiple paths to 

get from the start to the goal location. Path optimization must be used in order for the robot to determine 

the best path. While there are many aspects that may make a path the best, this paper will concentrate on 

finding the shortest route. Ant Colony Optimization (ACO) has been shown to have good results when 

used for shortest path planning. When reviewing the literature however, it was found that ACO 

algorithms were rarely used for dynamic path planning, i.e., environments that are changing. This is 

unusual as environments are rarely static in the real world. This paper, therefore, presents a method of 

using ACO in dynamic environments. Max-Min ACO was chosen for this problem as it results in shorter 

paths with faster convergence speeds than basic ACO. This algorithm was further adapted to achieve 

better paths by incorporating a modified version of the Bug2 algorithm presented by Lumelsky and 

Stepanov (1987) to determine the initial best path.  

The remainder of this paper is laid out as follows: Section 2 outlines the basic ACO algorithm, 

Section 3 presents the state of the art in ACO path planning, Section 4 details the algorithm presented in 

this paper, Section 5 shows the results of the simulations, and Section 6 presents the conclusions. 
 

2. Basics of ACO 
Hsiao et al. (2004) stated that ACO is a graph based evolutionary meta-heuristic optimization 

technique. It has been used successfully to solve a variety of optimization problems. ACO is used to solve 

minimum cost-path searching in graphs. The algorithm works by using a large number of simulated ants 

walking through a grid or nodal map to find the shortest route between two points. Individual ants follow 

a very simplistic behaviour and therefore by themselves achieve very poor results. By cooperating with 

many simulated ants however, better paths can be found. 

The behaviour of the simulated ants mimics the behaviour of biological ants searching for food. As 

ants search, they lay a pheromone trail behind them. The ants distribute the pheromones at a constant rate 

as they travel. This results in a higher concentration of pheromones being placed on shorter paths. This is 

because the ant following the shorter path can make more trips in the same amount of time as the ant 

following a longer route. This results in overlap of the pheromone on the shorter route. The pheromones 
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diminish over time, making the shorter path still more attractive as the pheromone on the longer paths will 

diminish faster. Other ants prefer to follow the path with the stronger pheromone trail as this indicates a 

better route. 

The simulated ants in ACO differ in some ways than the biological ants. The main difference is in 

how they distribute the pheromones. Rather than distributing the pheromone at a constant rate, the 

pheromone is instead distributed only after the simulated ant reaches the goal node. In ACO, each ant has 

a set amount of pheromone when leaving the starting node. When the ant reaches the goal node, the 

pheromone is distributed evenly over the length of the ant’s path. In this way, if the ant followed a short 

path then the pheromone density would be higher than if the ant took a longer path. When the pheromone 

densities are increased, that is also when the artificial evaporation takes place. The evaporation of the 

pheromone paths occurs in order to prevent simulated ants from getting caught in local optima. 

Another difference between biological ants and the simulated ants is in how the simulated ants decide 

in what direction to travel. Simulated ants are digital, and therefore can only travel in discrete directions 

based on the connectivity of the nodes. What directions the ants decide to follow are based on a 

probability function. According to Hsiao et al. (2004), this probability is based on a heuristic factor and a 

pheromone factor. For the heuristic portion, there is a higher probability of an ant choosing to travel to 

nodes that are closer together. For the pheromone portion, the higher probability goes to the connection 

that has the highest amount of pheromones between the nodes. Weighting values for the heuristic and 

pheromone factors are set to determine each factor’s relative influence on the ant’s decision making. For 

the algorithm to work, a small constant amount of pheromone must be applied to every node when the 

algorithm is initialized. When all of the ants have travelled through the map, the path with the highest 

concentration of pheromone is determined to be the shortest. 

The probability function used in the Improved Max-Min ACO algorithm, which is a variation on the 

function presented by Hsiao et al. (2004), is given by: 
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where Pij is the probability of travelling from node i to node j, ηij is the desirability of travelling from 

node i to node j based on the direction between the current node and the prospective node related to the 

direction between the current node and the goal node, τij is the amount of pheromone between nodes i and 

j, β is the heuristic weighting value, α is the pheromone weighting value, and S is the population of 

allowable nodes. 

 

3. State of the Art 
Han et al. (2011) compared basic ACO with an improved algorithm for robot path planning. The 

improved algorithm was similar to the basic ACO algorithm with one major change. In the improved 

method, the path of the first ant was set as the best path of the iteration. Subsequent paths were compared 

to the best path, and if one was shorter, then it became the new best path. Once all of the ants made their 

run, the pheromone update was made using just the best path of the iteration. After the max number of 

function calls was reached, the best path from all of the iterations was determined. It was found that the 

improved algorithm achieved shorter paths and higher convergence speeds than the basic ACO algorithm, 

but had more trouble dealing with local optima. This method is now referred to as Max-Min ACO. 

Hsiao et al. (2004) were some of the first to apply ACO to global path planning. They implemented 

the basic ACO technique to determine the best path between manually inputted start and goal positions on 

randomly generated maps. They showed that ACO was a viable algorithm to use in global path planning. 

Brand et al. (2010) presented a method of using basic ACO for robot path planning in a dynamic 

environment. The authors allowed the ACO algorithm to find the best path from a start to goal locations 

on a map, and then blocked that path. This forced the ants to find a new path. Two methods of path 

planning were tested. The first was termed global re-initialization, which consisted of resetting the entire 
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map to its initial pheromone levels and then re-running the ACO algorithm using the blocked position as 

the new start position and leaving the goal position the same. The second method was the local re-

initialization technique, in which only nodes close to the blocked location had their pheromone levels 

reset.  

 

4. Path Planning Algorithm 
The proposed algorithm in this work was based on the Max-Min ACO algorithm. Several 

modifications were made to this algorithm. The first change was that the heuristic factor was not based on 

the distance between nodes, but the direction of the node in relation to the direction of the goal position. 

The closer a direction is to the direction of the goal position, the higher the likelihood of the ant travelling 

in that direction. With each move of the ant’s location being more likely to bring it closer to its goal, each 

ant will eventually reach its goal. When it does, the ant in the population with the shortest route will 

reinforce the pheromone level along its path. In addition, all pheromone levels will diminish over time. 

The pheromone will not be allowed to decrease below a minimum level. The Max-Min ACO iterates for 

another population of ants and will keep doing so until an optimal solution or the max number of ants is 

reached.  

To allow the algorithm to be capable of dynamic path planning, the goal was to take advantage of the 

faster computation times of the Max-Min ACO method and make modifications to this method to allow 

for more optimal results. When using the basic Max-Min ACO method, it was found that the first ant in 

each generation typically found a very poor path. This resulted in increased computation time at the 

beginning of the algorithm, resulting in the algorithm requiring more time to generate quality solutions. 

To improve the processing time, a modified version of the Bug2 algorithm presented by Lumelsky and 

Stepanov (1987) was used to generate the initial best path. This algorithm works by planning a straight 

line between the start and goal locations. The ant tries to follow that line until it hits an obstacle. The ant 

then follows the edge of the obstacle until it intersects with the original straight line path, at which point it 

starts following the original path again. The ant continues this way until it reaches the goal. The Bug2 

algorithm needed to be modified slightly to allow for this same behaviour to be modelled when using 

nodes to define the ant’s path. In the method presented here, the ant followed the edge of any obstacles 

until there was a free node on the line between its current location and the goal. The modified Bug2 

algorithm provided an excellent baseline best path for the rest of the Max-Min algorithm. The second 

modification was that the re-initialization method presented by Brand et al. (2010) was also implemented. 

When the best path intersected with a dynamically blocked node, the program ran again with the node 

before the blocked node set as the new initial node and the goal node remaining the same. The pheromone 

left by the previously found best path was left in the program’s memory, so that if the new ants found 

their way back to the previous best path, they could follow that rather than having to calculate the entire 

route again. 

The algorithm presented here worked in the following fashion: first, the simulated map was generated 

by MATLAB. The map contained random pathways which were known by the robot, and blocked 

pathways which were unknown to the robot. A random map was used to allow larger test maps to easily 

be created to test the algorithm, but the code could easily be modified to accept an occupancy grid 

instead. Next, the start and goal nodes were selected. The improved algorithm was then run to determine 

the best path. If the path found by the algorithm did not pass through any blocked corridors then the goal 

was reached. If the path did intersect with a blocked corridor, then the node before the blocked node was 

set as the new initial node and the map was updated to include the blocked node. The goal node remained 

the same, and the Improved Max-Min ACO algorithm was run again but with the pheromones from the 

previously determined path left to help guide the new ants. The best path from the robot’s current location 

to the goal was then determined. This process repeated itself until the goal position was reached.  

 
4. 1. Test Map Generation 

In order to test the performance of the Improved ACO algorithm for path planning, random maps 

needed to be generated. The maps used for this experiment were path maps, which represented the 
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connections in a grid of nodes. The basis for this style of map is that all (x,y) nodes of the map are 

reachable, however thin walls in between these nodes block certain adjacent nodes from being reached. 

The path map is represented by a       matrix. The user declared the number of nodes in both of the 

x and y directions. For each node (x,y), there were 8 possible directions of travel to a neighbouring node. 

A connected node in the direction given by the direction index between 1 and 8 was represented by a 1, 

whereas a 0 represented a blocked node. The direction index was representative of the directions shown in 

Figure 1. 

The number and directions of connected pathways were generated randomly for each node. Once the 

pathways were generated, they were displayed graphically to the user in a greyscale image. The user was 

then prompted to select a node for the robot’s starting position, followed by selecting a node for the 

robot’s desired goal position. Figure 2 shows an example of a map used for testing the algorithm. 

 

 

   
Fig. 1. Direction indices. Fig. 2. Example test map. 

 

 

4. 2. Modifications to the Max-Min ACO Algorithm 
The Max-Min ACO algorithm was modified to achieve faster convergence speeds while still finding 

shorter paths. The main issue found with the Max-Min ACO algorithm was that although it converged on 

a solution quickly, the shortest absolute path took much longer to find. To compensate for this, a high 

weighting value was used for the heuristic factor of the first ant. This was done to replicate the Bug2 

algorithm presented by Lumelsky and Stepanov (1987) as explained earlier. The issue implementing the 

Bug2 algorithm in this way was that it could get trapped in dead ends on the map. This was fixed by 

having the ant knowing its old positions and knowing not to follow the same path again. If the ant found 

its path again, it knew that following it again would result in falling into a loop, and therefore would go to 

a different node instead. This provided an excellent baseline best path for the following ants to work with. 

Once the first ant completed its journey the pheromone trail was updated. As the Max-Min ACO 

algorithm only saves paths if they are shorter than the best path, using the Bug2 algorithm allowed for 

faster convergence speeds as shorter paths were saved from the beginning. After the first ant made its way 

to the goal, the weighting value for the heuristic factor was lowered to allow for more exploration, and 

also so that the pheromone factor would be more effective as well. This was the only time adjustments 

were made to the weighting values, afterward the algorithm used a well-balanced probability function 

with the heuristic and pheromone factors weighted evenly. 

Algorithm 1 shows the pseudocode for the Improved Max-Min ACO algorithm presented in this 

paper. 
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Algorithm 1. Improved Max-Min ACO Algorithm 

 
 Create randomly generated map 

 Allow user to select the robots start and goal position 

 Initialize pheromone for all paths to one 

 while                             do 

  while                do 

   for         do 

                

                               

    while                           do 

     if        then 

                 
      Move ant using Bug2 Algorithm 

      return          and           

     else 

                 
      Move ant using standard ACO Algorithm 

      return          and           

     end if 

             (        )   [                   ] 
         ( )      ( )                    

                 

    end while 

    if        then 

                       (     ) 
                   ( ) 
    else if     ( )            then 

                       (     ) 
                   ( ) 
    end if 

   end for 

   Draw best path on the map for the user to see 

   {Evaporate all pheromones} 

            (   ) 
   if              then 

                  
   end if 

   {Reinforce pheromones on best path} 

       (        )      (        )        

  end while 

  Simulate robot moving… Check for blockages along desired path… 

  if {path is blocked} then 

                               

  else 

   {Goal Reached!} 

  end 

 end while 
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5. Results and Comparison 
To quantify how well the Improved Max-Min ACO algorithm performed, solutions found using this 

method were compared to the results found using both the standard ACO and the unmodified Max-Min 

ACO algorithms. For proper comparison, each algorithm was performed on the same map using the same 

parameters. Each population consisted of 50 ants. Each algorithm would run until convergance occured or 

until the maximum allowed number of ants had been reached. Each algorithm was tested 10 times per 

map. Three map sizes were used for this experiment:      ,      , and      . Three performance 

factors were evaluated: the minimum length solution found, the average solution length, and the execution 

time. Table 1 presents the results of the simulation. 

 

 
Table 1. Performance Comparison of ACO Methods 

 

 

 

As can be seen in Table 1, for a small       map the Improved Max-Min algorithm found 

substantially shorter average and absolute distance paths than either the basic ACO or the unmodified 

Max-Min methods. It also had the fastest processing speed. In a similar vein, for the       map the 

improved algorithm found much shorter average and absolute paths than the other methods. Again, the 

processing time was much shorter than for ACO, and still shorter than for Max-Min. For the       

map, the results were less encouraging. ACO found the absolute shortest path, followed by the Improved 

Max-Min method, with the basic Max-Min method finding the longest path. The improved method 

however did have a slightly shorter average path length compared to the other two methods. Again 

however, the Improved Max-Min algorithm showed significantly faster processing speeds. 

It is believed that for the small and medium sized maps, the Bug2 portion of the algorithm was able 

to solve large portions of the optimal path at the beginning of the run. This allowed for rapid convergence 

with excellent path lengths. For longer, more complicated paths however, the Bug2 portion was less 

effective. While the improved algorithm still converged much more rapidly than either of the other 

methods, its results were only comparable to the other methods rather than significantly better as shown 

with the smaller maps. The faster processing speed makes the Improved Max-Min ACO algorithm 

presented here attractive for practical applications. Faster processing speeds are especially advantageous 

for dynamic problems when the algorithm may be executed multiple times. 

Figures 3-5 show the path maps for each map size tested. The red lines show the paths found by the 

basic ACO algorithm, the green lines show the paths found using the Max-Min ACO algorithm, and the 

blue lines show the paths found using the Improved Max-Min ACO algorithm. 

 

      map ACO Max-Min ACO Improved Max-Min 

Min. Path Distance 351.1 351.1 289.7 

Avg. Path Distance 352.3 352.3 297.9 

Avg. Processing Time (s) 14.6 1.36 1.17 

      map ACO Max-Min ACO Improved Max-Min 

Min. Path Distance 737.4 737.4 636 

Avg. Path Distance 823.9 753.7 670.1 

Avg. Processing Time (s) 33.1 8.27 5.05 

      map ACO Max-Min ACO Improved Max-Min 

Min. Path Distance 1082.3 1127.1 1098.8 

Avg. Path Distance 1161.7 1154.2 1153.7 

Avg. Processing Time (s) 52.7 9.86 7.06 
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Fig. 3. Route Comparison -       map. The red line 

represents the basic ACO result, the green line is the 

unmodified Max-Min result, and the blue line is the 

Improved Max-Min result. 

Fig. 4. Route Comparison -       map. The red line 

represents the basic ACO result, the green line is the 

unmodified Max-Min result, and the blue line is the 

Improved Max-Min result. 
 

 
Fig. 5. Route Comparison -       map. The red line represents the basic ACO result, the green line is the 

unmodified Max-Min result, and the blue line is the Improved Max-Min result. 

 

5. 1. Results of Dynamic Simulation 
To determine if the Improved Max-Min ACO would work with a dynamic environment, tests were 

run with dynamic objects being added to the map. Figure 9 shows the path found using the Improved 

Max-Min algorithm on a dynamic map. The blue line shows the path that robot would take after being 

blocked by two obstacles. The red sections show where the paths were before the obstacles were added. 

As can be seen in the figure, the first obstacle resulted in an almost entirely new path being calculated. 

With the second obstacle however, only a short detour was required before the algorithm converged on 

the previous path again. The results show that the Improved Max-Min ACO algorithm works for dynamic 

environments. 
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Fig. 6. Paths found on a map with obstacles 

 

6. Conclusions 
This paper presented an Improved Max-Min ACO algorithm for dynamic path planning. By adding 

the Bug2 algorithm to the Max-Min ACO algorithm, faster convergence speeds with better solutions were 

found. Leaving the old pheromone trails when re-initializing the system when the path was blocked also 

increased the processing speed. It is believed that this method would be viable for global path planning. 

The Improved Max-Min ACO method is superior to the standard ACO and Max-Min ACO algorithms, as 

it results in shorter average path lengths and vastly reduced processing times. Future work on this 

algorithm would include testing the algorithm with an actual robot in a known environment with moving 

obstacles. 
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