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Abstract - Neurobiological control systems are of practical interest because animals interact proficiently with novel,
unstructured environments. This study investigates a model of neurobiological control of eye movements. We re-
implement an abstract control model of smooth-pursuit (tracking) eye movements as a network of spiking neurons. We
find that the behaviour of the neural model is similar to that of the abstract model, but there are several differences that
seem to be inherent in the neural implementation, including greater lag and the introduction of point attractors. We
also describe a preliminary integration of the model with a pan-tilt camera. Performance of different variations of the
model suggests the importance of covert visual attention in this system.
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1. Introduction

The control systems that guide animal motion are quite different from those that guide robots, and are
more effective in natural environments. Neurobiological systems have been studied and recorded inten-
sively for several decades, but so far there has been limited success in reverse-engineering superior control
strategies from these systems. Detailed investigation of specific brain areas often reveals surprisingly simple
computations, suggesting that the robust and adaptive behaviour of the brain arises in part from its high-level
architecture. This presents a barrier to the application of brain-inspired approaches to engineering control
problems, in that in order to understand why neurobiological control works so well, it may be necessary to
model extensive control networks. In this context, the network that controls eye movements in humans and
other primates is of particular interest, because all of its parts are relatively well-studied. Eye movements are
also important for vision, in that they allow most computational resources of the visual cortex to be concen-
trated on a series of small regions, whereas parallel analysis of the whole scene in such detail would require
a much larger brain. In this work, we focus on smooth pursuit eye movement, which involves visual tracking
of a moving object in the environment (in contrast with saccades, which are rapid step-like shifts in gaze
direction). Our main contribution is the re-implementation of an existing high-level control model of smooth
pursuit eye movements (Churchland & Lisberger, 2001), which has been validated against monkeys. Our
implementation is composed of spiking neurons, i.e. neurons that communicate through 1ms pulses (spikes)
in cell-membrane potential. Also, the original model was developed with scalar retinal velocity as input,
which avoids the issue of obtaining this signal from the eye. As a step in addressing this point, we present
initial results from embedding the model in a loop with a pan-tilt camera.

2. Methods
Our starting point is the smooth-pursuit model of Churchland & Lisberger (2001), which focuses on
the dynamics of feedback control in this system. Specifically, it assumes that the visual cortex accurately
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encodes the velocity of the pursuit target, and fits a system of transfer functions and static nonlinearities to
the monkeys’ eye velocities in response to various moving stimuli. The structure of this control model is
based loosely on the anatomy of the neural system.

A key limitation of the control model is that it does not contain any neurons, but only abstract dynamic
blocks. Our main goal was therefore to approximate this abstract control model as a system of spiking neu-
rons, and to verify that such an approximation behaves similarly to the abstract model (and the monkeys).
For this purpose, we used the Neural Engineering Framework (NEF; Eliasmith & Anderson, 2003), the mod-
elling framework that was recently used to build the world’s most functionally sophisticated large-scale brain
model (Eliasmith et al., 2012). The NEF provides a way of translating a high-level system description, in the
form of a system of explicit nonlinear ordinary differential equations, into a network of spiking neurons that
has similar behaviour. The dynamics of the resulting neural model arise from low-pass filtering properties
of connections between neurons (synapses). Biological synapses are low-pass because an incoming spike
opens a large number of ion channels in the cell membrane of the receiving neuron, which then close at ran-
dom with exponential continuum dynamics. An ensemble of neurons in an NEF model has correlated spike
rates, which are nonlinear functions of a state vector x. The ensemble is said to “encode” x. A connection
from one ensemble to another communicates some function y = f(x), which corresponds to the synaptic
weights of connections between individual neurons. These weights are determined analytically from f(x),
as wjj = eld i» where w;; is the weight of the synaptic connection from neuron i in the sending ensemble to
neuron j in the receiving ensemble, d; (the “decoder”) are coefficients in an optimal linear reconstruction of
f(x) from the spike rates, and e; (the “encoder”) projects x into the space of the net synaptic current flowing
into post-synaptic neuron j.

Implementation of the control model in neurons involved decoding nonlinear functions from neural en-
semble activity, and constructing feedback networks to approximate low-pass and band-pass filters and in-
tegrator components of the control model. A low-pass filter occurs naturally in the connection from one
ensemble to another, but it has the time constant of synaptic dynamics, a molecular property that is most
typically in the 5-10ms range. We added feedback connections in order to match a 55ms time constant and
a pure integrator in the control model, using methods described by Eliasmith & Anderson (2003). We used
a network of two interconnected ensembles to approximate a second-order band-pass filter with a .4ms time
constant, based on a network in Tripp & Eliasmith (2012).

We also tested the model as a controller for a pan-tilt camera (Figure 1B). We captured frames from
the camera at 25Hz, estimated optical flow, extracted average velocity from a central region, interpolated
to obtain a .001s time step, and used this as input to the controller. The controller output was then used to
drive pan and tilt servos. We calculated optical flow using a real-time GPU implementation of pyramidal
algorithm of Lukas & Kanade (Marzat et al., 2009). This algorithm solves the aperture problem (i.e., the
direction of motion of an edge is ambiguous given only local information). We used this velocity field as an
approximation of neural activity in area MT of the primate cortex, which also solves the aperture problem
(Pack & Born, 2001) through as-yet unclear mechanisms.

3. Results

Figure 2 shows example simulations that compare the Churchland et al. (2001) control model with
our spiking neural model. We implemented our neural model so it had the same low-pass and band-pass
filter time constants and the same nonlinear saturations. However, three major factors contributed to some
differences (see Figure 2). First, the decoded output of the neural model contains high-frequency noise that
is related to the brevity of spikes relative to other timescales in the system (Eliasmith & Anderson, 2003).
We have some control over the amplitude of this noise, as it decreases with increasing numbers of neurons
in the model. To make the simulations tractable our model included far fewer neurons (i.e., 9 thousand) than
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Fig. 1. A, High-level structure of the neural model, showing connections between neural ensembles and brain areas to
which they are meant to correspond (see Mustari et al., 2009, for more information about the roles of these areas). MT
= middle temporal area of the visual cortex; MST = middle superior temporal area; FEF = frontal eye fields; DLPN =
dorsolateral pontine nucleus. FEF and DLPN are subdivided into multiple ensembles in order to approximate the
required dynamics: x1 and x2 encode different state variables in a band-pass filter; f encodes the state of a low-pass
filter; intg encodes the state of an integrator. B, The pan-tilt camera.

the corresponding biological systems (i.e., millions), but we did not find that this noise substantially affected
control. Second, there are small differences between the mean output of each ensemble for a given input
and the ideal output. In a network with feedback, these differences can create attractors that produce steady-
state errors in the output (Eliasmith & Anderson, 2003). We observed this effect in our models as steady-
state error which depended on randomly-selected neuron parameters (including maximum firing rates, etc.).
These errors were particularly pronounced with signals that were much smaller than the neurons’ operating
ranges (see example in Figure 2C). Thirdly, our neural model contains an additional pole that corresponds to
synaptic dynamics in the connection between the MT and MST ensembles. Nothing in the original control
model reflected these inevitable dynamics. This difference increases phase lag and causes our model to
oscillate at somewhat lower gains relative to the control model (not shown).
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Fig. 2. Comparison of Churchland & Lisberger (2001) control model with our neural model. Dashed lines are input
(visual velocity). Light solid lines are the output of the control model, and dark solid lines are the output of the neural
model, which is an optimal linear estimate of the state of the integrator ensemble from the ensemble’s spike
responses. A, Step input. B, Sinusoidal input. C, An example of smaller sinusoidal input that illustrates non-ideal
behaviour of the neural model (note difference in scale vs. B).

3.1. Integration with Pan-Tilt Camera

We integrated the control model with a pan-tilt camera and tested the system’s ability to track a pendulum,
with minimal additional processing of the velocity field. The system clearly distinguished pendulum from
background, and moved in the same direction as the pendulum, partially tracking it. However unsurprisingly,
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tracking was not accurate or robust because whenever the pendulum was not well centred in the image due
to (realistic) lag between target and camera, the image-velocity estimate averaged over parts of both the
pendulum and the background. We then added an attention-like mask (based on colour) so that velocity was
averaged only over the pendulum (excluding the background). This greatly improved the results. This seems
to be an essential feature that has typically been omitted from neurobiological models of smooth pursuit.

4. Conclusion

Animals operate much more effectively in natural environments than current robots, so it makes sense
to examine neurobiological mechanisms of control. Notably, monkeys do not track visual motion very
precisely, and they exhibit large lags. This suggests that accurate visual pursuit is not critically important
for excellent visual perception. However, there may be other features of the dynamics that are important.
Our main current result is that the abstract model of smooth pursuit dynamics proposed by Churchland &
Lisberger (2001) is essentially consistent with a spiking neural implementation. This is a first step toward
developing higher-fidelity neural models that are validated more extensively against neural activity in the
corresponding brain regions. In the future, we hope to understand the important dynamic features in more
detail by developing increasingly realistic neurobiological models. There are several obvious directions
for future expansion. It is critical for practical operation of a camera to add a mechanism to ensure that
only the image velocity of the target (excluding the background) is fed into the controller. We used colour
information for this purpose. This could also be done by clustering velocities, finding the target by matching
intensity histograms, etc. but more work is needed to explore biologically plausible mechanisms. This is
an interesting topic that is likely to be related to neural mechanisms of covert attention (i.e., preferential
processing that is not strictly dependent on retinal location), which is intimately related to eye movements
(Moore & Fallah, 2001). Robust smooth pursuit may be an important application of covert attention. Another
important extension would be to add catch-up saccades, which animals use when smooth pursuit fails, e.g.
because the target is moving too fast (De Brouwer et al, 2002).
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