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Abstract - This paper investigates the difference between several stiffness models for a family of parallel 

manipulators that has n-DOF with an n-DOF central passive leg and n identical actuated legs. For demonstration 

purpose, the 3UPS-PU parallel manipulator is employed as an example. The Jacobian matrix of the mechanism is 

first analysed for the purpose of subsequent analysis; then the traditional stiffness matrix of the mechanism is 

derived based on calculation of the Jacobian matrix. Thirdly, based on the kinetostatic and the principle of virtual 

work, one derives the kinetostatic compliance matrix of the 3UPS-PU mechanism by considering the central passive 

limb as rigid. Furthermore, the dexterous stiffness model is proposed to evaluate the transferring ability of the 

manipulator. Through comparison among compliance in each direction under different stiffness models, it comes to 

the fact that the kinetostatic compliance model is the closest one to the traditional stiffness model, which verifies the 

accuracy of the kinetostatic stiffness/compliance model. 

 

Keywords: Parallel manipulator, traditional stiffness model, kinetostatic stiffness model, dexterous 

stiffness model, stiffness comparison. 

 

 

1. Introduction 
Parallel mechanisms have been widely used recently, especially in parallel robotic machine tools 

(Zhang, 2009), automotive realm (Yu, 2010), medical devices (Pan, 2011, Castelli, Ottaviano, 2010), etc. 

This is largely due to the fact that the parallel mechanisms possess high stiffness and high payload 

capacity, etc., comparing to their serial counterparts. These attributes all attribute to the structure of 

parallel mechanisms, i.e. the moving platform is connected to the base by several parallel limbs and 

therefore, the force and loads acting on the moving platform can be distributed by those limbs.  

Stiffness can be viewed as one of the most important characteristics for parallel manipulators, since 

high stiffness can lead to high precision when manufacturing pieces in the machine tools arena, and until 

now there are several stiffness models being proposed. The basic one is the traditional stiffness model 

(TSM), which is derived based on calculation of Jacobian matrix of the mechanism, and it has been 

widely used in the area of parallel manipulators. The traditional stiffness model didn’t consider the central 

passive leg, i.e. it assumes that the central passive leg is rigid if applicable, it only accounts for the 

actuated leg, and it normally assumes the joint stiffness of each actuator is 1000. Scholar Zhang (Zhang, 

2000) employed the kinetostatics and the principle of virtual work to derive the kinetostatic stiffness 

model (KSM) when considering the central passive limb as compliant and the kinetostatic compliance 

model (KCM) when considering the central passive limb as rigid, respectively, for a family of parallel 

manipulators that has n-DOF with a n-DOF central passive leg and n identical actuated legs. By default 

all the actuated links are assumed rigid, and the compliance of the mechanism is solely induced by the 

compliance of the actuator. Note that in the traditional stiffness model, the joint stiffness of each actuator 

is 1000. For the comparison purpose, we assume the central leg is rigid for the kinetostatic 

stiffness/compliance model, and the compliance of the actuator is set to 0.001, which is equivalent to the 

value 1000 for the stiffness of each actuator. Furthermore, the dexterous stiffness model (DSM) was 
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proposed to account for the singular position of the mechanism in order to evaluate the transferring ability 

of the manipulator (Zhang, 2012).  

In (Wei, et al., 2012), the conservative congruence transformation (CCT) stiffness model and the 

traditional stiffness model of a 4UPS-PU parallel manipulator are compared, and it is shown that the 

stiffness in each direction under CCT model is larger than that of the traditional stiffness model. 

Similarly, in (Hong, 2002, Li, Gosselin, 2007), the CCT stiffness model and the traditional stiffness 

model of parallel manipulators are compared and analysed. To the best of the authors’ knowledge, no one 

has ever compared kinetostatic stiffness model and dexterous stiffness model with the traditional stiffness 

model. The importance of comparing these stiffness models is that it can verify the accuracy and 

correspondence of these stiffness models, which can pave solid foundation for future usage, especially for 

the kinetostatic stiffness/compliance model. In order to compare and verify the correspondence and 

accuracy of these different stiffness models, the 3UPS-PU parallel manipulator is employed as an 

example for demonstration, and the compliance in each direction of 3UPS-PU parallel manipulator is 

compared under the above three stiffness models. The reason why we didn’t compare the stiffness in each 

direction here is that the compliance matrix derived by the kinetostatic and principle of virtual work 

cannot be inverted. 

 

2. Inverse Kinematic and Jacobian Matrix 
Figure 1(a) is the 3UPS-PU mechanism. The moving platform is connected to the base by three 

identical actuated limbs U-P-S and one central passive limb P-U. Due to there is a middle passive limb, 

this parallel mechanism has three degrees of freedom, i.e. two rotations about X and Y axes and one 

translation along Z axis. For the purpose of analysis, two Cartesian coordinate systems ( , , )O X Y Z  and 

( , , )P x y z are attached to the centre of the base and moving platform, respectively, as shown in figure 

1(b).  
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Fig.1. (a) 3UPS-PU mechanism (b) schematic representation (c) kinematic structure of passive constraining leg 

 

2. 1. Inverse Kinematic 
Based on the vector loop equation, the following can be obtained,  

 
'O

i i i iP b P Qr b            ( 1,2,3)i    (1) 

 

where ib  are the position vectors of point 
iB  with respect to the fixed frame, 

'

ir and iP  are position 

vectors of attachment points on the moving platform with respect to moving frame and fixed frame, 

respectively, 
OP  is the coordinate of point P  with respect to fixed frame, and Q  is rotation matrix of the 

moving frame with respect to the fixed frame. The solution of the inverse kinematic can be written as 

follows, 

 
2 ( ) ( )T

i i i i iP b P b      (2) 
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2. 2. Jacobian Matrix  

Considering the parallel component of the mechanism, the parallel Jacobian matrices A  and B  can 

be computed by differentiating equation (2) with respect to time (Zhang, 2000), one obtains, 

 

'( ) [( ) ( )]T T

ii i i i i iP b P Qr P b  
 

         (3) 

 
One can write the velocity equation as  

 

At B 


     (4) 

 

where 1 2 3

T
T T TA m m m    ,  1 2 3B diag    , 

'( ) ( ) ( )
T

i i i i i im Qr P b P b       

Then the Jacobian matrix of the pure parallel component can be expressed as: 

 
1

parallelJ B A    (5)    

 
The central passive limb can be viewed as a serial component, the kinematic structure of it is shown 

in figure 1(c), and the D-H parameters are subsequently obtained as listed in table 1. 

 

 Table. 1. The D-H parameters for the central passive leg. 

 

i  ia  
id  
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     2  

3 0 0 0      3  

 

where 1  and 2  are the joint angles of the universal joint in the central passive leg. For the central 

passive leg, one has,  
 

serialt J 


    (6) 

where t  is the twist of the platform , 


 is the joint velocity vector associated with the central passive 

leg, and serialJ is the Jacobian matrix of the central passive leg of the mechanism (Zhang, 2000). The 

Jacobian matrix for the whole mechanism can therefore be expressed as (Zhang, 2011): 

 

rigid parallel serialJ J J    (7)     
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3. Different Stiffness Models of the Mechanism 
3.1. Traditional Stiffness Model 
     The traditional stiffness model can be determined based on the calculation of the Jacobian matrix, and 

it is already well known so we just directly give its form as follows: 

 
T

rigid q rigidK J K J                                                                                                                             (8) 

 

where qK  is the joint stiffness matrix of the parallel mechanism, with 1 2 3[ , , ]qK diag k k k . The scalar 

( 1,2,3)ik i   represent the joint stiffness of each actuator. Normally the actuated limbs are the same for 

the purpose of easy controlling, and then the above equation can be rewritten as:  

 

1000T T

rigid rigid rigid rigidK kJ J J J                                                                                                    (9) 

 

where 1 2 3 1000k k k k    . The leading diagonal element of stiffness matrix K  represents stiffness 

in each direction. The traditional stiffness model didn’t consider the central passive leg, i.e. it assumes 

that the passive leg is rigid if applicable. It only accounts for the actuated leg, and it normally assumes the 

joint stiffness of each actuator is 1000 as shown in above equation.  

 
3.2. Kinetostatic Compliance Model  
     Scholar D. Zhang derived the kinetostatic compliance model (KCM) when considering the central 

passive limb as rigid for a family of parallel manipulators that has n-DOF with a n-DOF central passive 

leg and n identical actuated legs by employing the kinetostatics and the principle of virtual work (Zhang, 

2000), and by default all the actuated links are rigid, and the compliance of the mechanism is only 

induced by the compliance of the actuator. Here for the purpose of comparison with the traditional 

stiffness model, it is assumed that the central leg is rigid, and the compliance of the actuator is set to 

0.001, which is equivalent to the stiffness of each actuator 1000 in the traditional stiffness model. One can 

use the principle of virtual work to derive the compliance matrix of the 3UPS-PU mechanism. Based to 

the principle of virtual work, one has the following equation, 

 

T Tw t 


                                                                                                                                    (10) 

 
where   is the vector of actuator forces and w  is the wrench applied to the platform. Rearranging 

equation (4) and substituting it into equation (10), one obtains the following, 

 

( )T T T

serial serialAJ B J w                                                                                                               (11) 

 

     An actuator compliance matrix C  is defined as C   , and C is a (3 3 ) diagonal matrix whose 

ith diagonal element is the compliance of the ith actuator. Like stated above, here we assume the 

compliance of each actuator is 0.001, which corresponds to the joint stiffness of each actuator in the 

traditional stiffness model. Make use of equation (6) and (11), and rearrange the equation finally yields 

the following,  

 
1( ) ( )T T T

serial serial serial serial cc J AJ BCB AJ J w C w                                                                     (12)      

 

where cC  is 6 by 6 Cartesian compliance matrix and it cannot be inverted.  
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3.3. Dexterous Stiffness Model 
For the working environment of the manipulator, when the robotic system works in the singular 

points or near-singular region, its accuracy, rigidity and other performances will be worse (Zhang, 2012). 

Thus the leading diagonal elements cannot truly reflect the stiffness of the mechanism. Hence the 

dexterous stiffness model was proposed to evaluate the transferring ability of the manipulator. The 

dexterous stiffness matrix can be written as: 

 
' ' T

L rigid rigidK k J J                                                                                                                         (13) 

 

where 
1000

'
( ( )) ( )T

rigid rigid

k
svd J svd J




, ( )rigidsvd J  means the singular value decomposition of Jacobian 

matrix rigidJ .  

 
4. Compliance Comparison among Three Models 
4.1 Traditional Stiffness Model 

For the purpose of analysis, we assume 0.07pR  , 0.16bR  , z=0.66, 2 100  , 3 0  , then the 

stiffness matrix K of the 3UPS-PU parallel manipulator can be determined: 

2872.6 0.4 3.7

0.4 6.9 0.3

3.7 0.3 6.8

K

 
 


 
  

 

 
The compliance matrix is the inverse of the stiffness matrix, and it has 

0.0003 0 0.0002

0 0.1461 0.0055

0.0002 0.0055 0.1472

C

 
 

 
 
  

 

 
The compliance in each direction is:   

[ ] [0.0003,0.1461,0.1472]
x yzc c c    

 
The sum of the compliance is: 0.0003+0.1461+0.1472=0.2936. 

 
4.2. Kinetostatic Compliance Model 

The same parameters are used for comparison purpose, and one has the following compliance matrix: 

0.1428 0.0054 0.0252 0 0 0.0002

0.0054 0.1461 0.0010 0 0 0

0.0252 0.0010 0.0044 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0.0002 0 0 0 0 0.0003

C

 
 
 
 

  
 
 
 
 
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The compliance in each direction is: 

[ ] [0.1428 ,0.1461,0.0044,0,0,  0.0003]
x y zc x y zC c c c c c c     

 
The sum of the compliance is: 0.1428+0.1461+0.0044+0+0+0.0003=0.2936. 

 
4.3. Dexterous Stiffness Model 

Similarly, the same parameters are used and the dexterous stiffness matrix is as follows, 

'

995.2671 0.1525 1.2921

0.1525 2.3743 0.0885

1.2921 0.0885 2.3586

LK

 
 


 
  

 

 
And its corresponding compliance matrix is as follows,  

0.0010 0.0001 0.0006

0.0001 0.4218 0.0159

0.0006 0.0159 0.4249

C

 
 

  
 
  

 

 
The compliance in each direction is: 

 

[ ] [0.0010,0.4218,0.4249]
x yzCompliance c c c    

 
The sum of the compliance is: 0.001+0.4218+0.4249=0.8477. 

 
4.4. Compliance Comparison 

The compliance in each direction of the 3UPS-PU parallel manipulator under different stiffness 

models are listed in table 2. 

 
       Table 2. Comparisons between three stiffness models. 

 

 Traditional stiffness model Kinetostatic compliance model Dexterity stiffness model 

Compliance in Z direction 0.0003 0.0003 0.0010 

Compliance in 
x direction 0.1461 0.1428 0.4218 

Compliance in 
y direction 0.1472 0.1461 0.4249 

Compliance sum 0.2936 0.2936 0.8477 

  
One can see that the compliance in Z direction under the traditional stiffness model and kinetostatic 

compliance model are the same, which means the stiffness in Z direction under these two models are the 

same. 

The difference of compliance in x direction is: 0.1461-0.1428=0.0033; 

The difference of compliance in y direction is: 0.1472-0.1461=0.0011; 

The sum of the compliance is the same 0.2936.  

One can see that the compliance difference in x  and y  are very small, therefore the accuracy of the 

kinetostatic compliance model is verified. The difference between traditional stiffness model and 

dexterous stiffness model is as follows: 
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The difference of compliance in Z direction is: 0.001-0.0003=0.0007; 

The difference of compliance in x direction is: 0.4218-0.1461=0.2757; 

The difference of compliance in y direction is: 0.4249-0.1472=0.2777; 

The difference of the sum of the compliance is: 0.8477-0.2936=0.5541. 

There is difference between these two stiffness models, which is quite expectable and reasonable, and 

these can be seen from stiffness equations (9) and (13). From figures 2-5, one can see that the kinetostatic 

compliance model is the closest one to the traditional stiffness model, which can also verify the accuracy 

of the kinetostatic stiffness/compliance model. 

 

  

Fig. 2. Compliance in Z. Fig. 3.  Compliance in 
x  

  

Fig. 4. Compliance in 
y . Fig. 5. Global Compliance. 

 

In the traditional stiffness model, if the joint stiffness of each actuator is set to k=2000, then one 

has the following results as shown in figures 6-8. One can see that there is difference for compliance in Z 

direction, x  direction and y  direction between the TSM and KCM, which is quite expectable and 

reasonable, because the joint stiffness of each actuator (k=2000) does not correspond to the compliance of 

the actuator 0.001. Overall, from figures 2-8, it verifies the correspondence and accuracy of the 

kinetostatic compliance/stiffness model. For parallel manipulators that has 4-DOF with a 4-DOF central 

passive leg and four identical actuated legs and 5-DOF with a 5-DOF central passive leg and five 

identical actuated legs, the same results can be obtained. 
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                    Fig. 6. Compliance in Z.                                             Fig. 7. Compliance in 

x .   

                 

                                    
                                                                       Fig. 8. Compliance in 

y . 

 

5. Conclusion 
This paper studied the difference between three stiffness models for a family of parallel manipulators. 

The traditional stiffness matrix was first derived based on calculation of the Jacobian matrix. Secondly, 

one derived the compliance matrix of the 3UPS-PU mechanism by considering the central passive limb as 

rigid for the purpose of comparison based on the kinetostatic and the principle of virtual work; 

furthermore the dexterous stiffness model was proposed. Through comparison among compliance in each 

direction under different stiffness models, it was found that the compliance in each direction of different 

stiffness models corresponds to each other, and most importantly, the accuracy of the kinetostatic 

stiffness/compliance model was verified.  
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