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Abstract - This article presents a simulation study to control a human arm motion using muscle excitations as inputs.
Our simulation implements the musculoskeletal model Arm26 provided in OpenSim which has 2 DOF and 6 muscles as
actuators. First, in order to drive the limbs’ motion to track a desired trajectory, we propose an Adaptive Sliding Mode
Controller (ASMC) to compute the necessary driving moments at each joint. Since the system is over actuated, the
Generalized Reduced Gradient (GRG) method is implemented to optimally distribute forces to each muscle. Because
the system has a cascade structure, another Sliding Mode Control (SMC) within a Back Stepping algorithm framework
is used to drive the muscle excitation so that each muscle can produce the desired force.

Keywords: Sliding mode control, motion tracking, computed muscle control, FES, arm tremor.

1. Introduction
Functional electrical stimulation (FES), which uses small electrodes attached to the patient’s skin to

stimulate the muscles underneath, offers a potential solution to develop a soft, wearable rehabilitation device
for parkinson patients. In fact, there are several on-going projects to develop a device of this kind. However,
current research mainly use simple control strategies, such as open loop, PID, and fuzzy logic as in some
recent publications (Gallego et al. (2011), Widjaja et al. (2008), Shariati et al. (2011)). These controllers are
preferred because they do not require knowledge of the system model. However, their performance relies
greatly on the tuning process, and they can not deal with large disturbances and great parametric variations.
These drawbacks motivate the development of more robust control algorithms. The challenges in developing
a feedback controller for tremor suppression include the complexity and highly non-linear properties of the
human body. Moreover, many parameters of the model are not measurable and time variant. Therefore, this
article proposes an adaptive controller, that uses the neural excitation to control the muscles in order to track
a desired trajectory for the elbow and shoulder flexion. This controller can handle the mismatches between
the mathematic model and physical body, and bounded disturbances. This will establish a foundation for
future work, in which FES will be used to adjust the neural excitation in order to stabilize the arm tremors.

2. Body Dynamics and Adaptive Control
2.1. Dynamics Model

We limit to the task of controlling the joint flexion in the sagittal plane as illustrated in Fig. 1, where to
the left is the right arm’s skeleton model, and to the right is its free body diagram. Let m1,P1, I1 and m2,P2, I2
be the mass, the gravity force, and the inertial moment at the mass center points A and C of the lower arm
and the upper arm, respectively. M1 and M2 are the elbow and shoulder moments. Let (α1,α2), (α̇1, α̇2), and
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(α̈1, α̈2) be the elbow and shoulder flexion, and their angular rates and angular accelerations, respectively.

Fig. 1. Arm Model Fig. 2. Muscle dynamics model

Applying the Newton laws on the 2-link segments model depicted in Fig (1) yields the motion dynamics
as[

I1 +m1l2
AB m1lABlBD cosα1 +m1l2

AB
m1lABlBD cosα1 I2 +m2l2

CD +m1l2
BD +m1lABlBD cosα1

][
α̈1
α̈2

]
=[

M1− (P1lAB sin(α1 +α2)+m1lABlBD sinα1α̇2
2 )

M2−M1− (P1lBD +P2lCD)sinα2 +m1lABlBDsinα1(α̇1+α̇2)
2

]
(1)

By introducing the following notation z1 , I1 + m1l2
AB, z2(α1) , m1lABlBD cosα1 + m1l2

AB, z3(α1) ,
m1lABlBD cosα1, z4(α1) , I2 + m2l2

CD + m1l2
BD + m1lABlBD cosα1, Y1(α1,α2, α̇2) , P1lAB sin(α1 + α2) +

m1lABlBD sinα1α̇2
2 , Y2(α1,α2,α̇1,α̇2),(P1lBD+P2lCD)sinα2−m1lABlBD sinα1(α̇1+α̇2)

2, Equ. (1) is rewritten
as [

α̈1
α̈2

]
=

1
z1z4− z2z3

[
−z4Y1 + z2Y2
z3Y1− z1Y2

]
+

1
z1z4− z2z3

[
z2 + z4 −z2
−(z1 + z3) z1

][
M1
M2

]
(2)

with the reduced notations zi , zi(α1) and Yi , Yi(α1,α2,α̇1,α̇2).

2.2. Adaptive Sliding Mode Controller (ASMC)
The dynamic model in Equ. (2) belongs to a general form :

ẍ(t) = f (x(t), ẋ(t))+g(x(t), ẋ(t))u(t)+d(t), (3)

where x(t) ∈ Rn is the state vector, u(t) ∈ Rn is the control input, f (x(t), ẋ(t)), g(x(t), ẋ(t)) are function of
x(t) and ẋ(t), and d(t) is the unknown disturbance. The objective is to control the system to follow a desired
trajectory xd(t). We will use short notation i.e x , x(t) and f , f (x(t), ẋ(t)) if it causes no confusion. Due
to the errors between the mathematic model and the physical one, the plant dynamic can be rewritten as

ẍ = fn +gnu+(∆ f +∆gu+d) = fn +gnu+d, (4)

where fn,gn describe the nominal system with known estimated parameters, ∆ f ,∆g are the unknown dif-
ference between the real and nominal systems and d , (∆ f +∆gu+ d) is the total uncertainty error and
disturbance. Define the sliding mode variable s , ė+Ce ∈ Rn, where e , x− xd is the error, and C ∈ Rn×n

is a positive definite diagonal matrix. Differentiating the sliding mode variable yields

ṡ = ë+Cė = fn +gnu+d− ẍd +Cė. (5)
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The conventional SMC is
u =−g−1

n ( fn− ẍd + cė+ sign(s)k) (6)

where sign(s), diag([sign(s1)...sign(sn)]) is the diagonal matrix and k , [k1...kn]
T with ki ≥ |dmax|, where

|dmax| is the maximum absolute value of d(t) (Huang et al. (2008)). Differentiating the Lyapunov function
V = 1

2 sTs along the trajectory (5) and (6) yields
V̇ = sTṡ = sT( fn +gnu+d− ẍd + cė) =−|s|Tk+ sTd ≤−|s|Tk+ |s|T|dmax| ≤ 0. (7)

which guarantees s→ 0. However, note that d depends on ∆gu, which leads to the fact that |dmax| can
be magnified when u is large, and choosing a large constant |dmax| can worsen the controller performance.
Therefore, we modify the control law given above. Assume

∃k∗ ∈ Rn : k∗i > |di +∆ fi(t)|max, ∃K∗ ∈ Rn×n : K∗i j > |∆gi j(t)|max for i, j = 1, ...,n. (8)

and define the controller
u , us1 +us2, us1 =−g−1

n ( fn− ẍd + cė+ sign(s)k(t)), us2 =−g−1
n sign(s)K(t)|u|, (9)

with the update law
k̇i = Proj(ki,

1
α
|si|), K̇i j = Proj(Ki j,

1
β
|siu j|), (10)

where Proj(θ ,y) is the projection operator (Khalil (2002)). The effectiveness of the proposed controller is
demonstrated by analyzing the Lyapunov function

Va =
1
2

sTs+
1
2

α

n

∑
i=1

(ki− k∗i )
2 +

1
2

β

n

∑
i=1

n

∑
j=1

(Ki j−K∗i j)
2. (11)

Substituting the controller defined in Equ. (9) into Equ. (5), yields
ṡ =−sign(s)k− sign(s)K|u|+(d +∆ f +∆gu)

=

−sign(s1)k1
...

−sign(sn)kn

+
−sign(s1)(K11|u1|+ . . .+K1n|un|)

...
−sign(sn)(Kn1|u1|+ . . .+Knn|un|)

+
d1 +∆ f1

...
dn +∆ fn

+
∆g11u1 + . . .+∆g1nun

...
∆gn1u1 + . . .+∆gnnun

 . (12)

Differentiating the Lyapunov function defined in Equ (11) along the trajectory (12) yields

V̇a = sTṡ+α

n

∑
i=1

(ki− k∗i )k̇i +β

n

∑
i=1

n

∑
j=1

(Ki j−K∗i j)K̇i j

=
n

∑
i=1

(di +∆ fi)si−
n

∑
i=1

n

∑
j=1

Ki j|siu j|+
n

∑
i=1

n

∑
j=1

∆gi jsiu j−
n

∑
i=1

ki|si|+
n

∑
i=1

(ki− k∗i )|si|+
n

∑
i=1

n

∑
j=1

(Ki j−K∗i j)|siu j|

=
n

∑
i=1

(di +∆ fi)si−
n

∑
i=1

k∗i |si|+
n

∑
i=1

n

∑
j=1

∆gi jsiu j−
n

∑
i=1

n

∑
j=1

K∗i j|siu j| ≤ 0. (13)

due to the definition of k∗i , K∗i j in (8). Therefore, according to the Lasalle-Yoshizawa theorem, all signals
remain bounded and the sliding variable s converges to zero. From Equ. (9), the controller is rewritten as

u =−(gn + sign(s)K(t)sign(u))−1( fn− ẍd + cė+ sign(s)k(t)). (14)

Comparing Equ.(14) to the conventional SMC, the proposed ASMC adds the gain K, to account for the
uncertainty in estimating system control gain (∆gu) which can be magnified when the control u is large. Note
that, when uTs converges to zero, then the ASMC controller converges to the conventional SMC controller.
Furthermore, K provides an easy way to handle the case of a singular gn, which would cause the standard
SMC to become unbounded. Also note that in Equ. (14), u depends on sign(u). Therefore, in practical
implementation, the previous value of u can be used to predict sign(u), and compute new u. Finally, the
sign(s) can be replaced by the saturate function sat(s,ε > 0) to avoid the chattering problem of SMC (Khalil
(2002)).
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2.3. Simulation Results

Table 1. Arm model simulation parameters

Model m1 I1 lAB m2 I2 lBD lCD

Physical 1.53 0.02 0.14 1.87 0.013 0.29 0.18
Nominal 1.8 0.022 0.16 2 0.015 0.31 0.20

Table 2. Muscle model parameters

εM
0 ktoe εT

0 klin εT
toe

0.6 3 0.033 1.712/εT
0 10.609εT

0

FT
toe kP γ A f FM

len
1/3 4 0.5 0.3 1.8

The physical parameters to simulate the arm model and the nominal parameters for the controller are
given in Tab. 1. The controller parameters are chosen as C = diag([7 7]), α = 0.01, β = 0.01, ε = 1◦. The
system response and control inputs are shown in Fig. (3) and (4). The Fig.(3) shows that the system output
converges to the desired output after 1.5s for the chosen control parameters.

Fig. 3. Tracking performance Fig. 4. Control moments and optimal force distribution

3. Optimal Force Distribution
In the Arm26 body model, 6 muscles BIClong, BICshort, TRIlong, BRA, TRIlat, TRImed (with respective

index i = 1, . . . ,6) create the moment M1, and 3 of them (BIClong, BICshort, TRIlong) create the moment
M2 as well. Therefore, the criterion that the muscles contributes the least force to produce the motion is
selected. The problem is formulated as minimizing the following cost function that satisfies the constraints

f (x) =
1
2

6

∑
i=1

F2
i +

1
2

6

∑
i=1

(Fi−Fp
i )

2, s.t
6

∑
i=1

r1
i Fi =M1,

3

∑
i=1

r2
i Fi =M2, Fimin≤ Fi≤ Fimax, i= 1, . . . ,6, (15)

where Fi and Fp
i are the forces produced by muscle i in the current and in the previous step, r1

i and r2
i are

the moment arms of the muscle i at the elbow and the shoulder respectively. Let x , [F1, ...,F6]
T ∈ Rn is the

state vector and m be the number of the equality constraints. The vector x can be partitioned as x = [xT
B,x

T
N]

T

where xB ∈ Rm is the basic vector and xN ∈ Rn−m is the nonbasic vector. The constraints in (15) can be
rewritten as[

r1
1 r1

2 r1
3 r1

4 r1
5 r1

6
r2

1 r2
2 r2

3 0 0 0

]
x =

[
M1
M2

]
⇔ Ax = b⇔ [B|N]

[
xB
xN

]
= b⇔ BxB +NxN = b, (16)

with obvious meaning of A and b, and B and N are partitions of matrix A corresponding to the vectors xB and
xN. The basic vector xB is chosen such that all its elements are not at the boundary Fimin < xBi < Fimax and
matrix B is nonsingular. Let x change by a small variation δ = [δ T

B ,δ
T
N ]

T and still satisfy the constraint (16)
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B(xB +δB)+N(xN +δN) = b⇔ δB =−B−1NδN. (17)

Let ∇ f , [∇B f T,∇N f T]T be the gradient vector of function f (x) with two components ∇B f T,∇N f T corre-
sponding to the vector xB and xN. It follows from Equ.(17) that the change of f caused by the variation δ

is
∆ f = ∇ f T

δ = ∇B f T
δB +∇N f T

δN = (∇N f T−∇B f TB−1N)δN = γ
T
NδN, (18)

where γT
N , ∇N f T−∇B f TB−1N. f is minimized if δ is chosen so that ∆ f < 0 as δ = α[ΓT

B ΓT
N]

T, where

ΓB =−B−1NΓN, ΓNi =

{
0 if (xNi = Fimin, γNi > 0) or (xNi = Fimax, γNi < 0),
−γNi otherwise,

(19)

Once [ΓT
B ΓT

N]
T is determined, the optimal α can be found as α = argmin f (x+αΓ), 0 ≤ α ≤ αmax,

where αmax = sup{α|Fimin ≤ xi ≤ Fimax}, i = 1, ...,6. Suppose the optimum step size is α∗, the iteration
will repeat with x+α∗Γ 7→ x until ||ΓN||= 0 or ||x(k+1)− x(k)||< ε , where ε is the chosen tolerance.

Fig. (4) illustrates the simulation results for the required moments simulated in the section (2). The
algorithm converges in less than 5 iterations on average.

4. Control Muscle
4.1. Muscle Dynamics Model

This section summarizes the Thelen muscle model (Thelen et al. (2003)), whose block diagram is shown
in Fig. 2. All muscles share the same block structures and formulas, but differ in four properties: the
maximum isometric force FM

0 , the optimal fiber length lM
0 , the tendon slack length lT

s , the pennation angle at
the optimal fiber length α0. Table 2 shows the same parameters across all muscles.

Tendon length The relationship between the tendon length lT(t) and the muscle length lM is given by
lT = lMT− lM cosα , where lMT , lMT(α1,α2) is the muscle tendon length and α is the pennation angle

α =


0, lM(t) = 0 or w/lM(t)≤ 0,
sin−1(w/lM(t)), 0 < w/lM(t)< 1,
π/2, w/lM(t)≥ 1,

with w = lM
0 sinα0. (20)

Tendon Force The tendon force FT(t) is governed by the tendon length lT as FT(t) = FM
0 FT

(εT), where

FT
(εT) =

1+ εT

1000
+


klin(ε

T− εT
toe)+FT

toe, εT > εT
toe,

FT
toe

ektoeεT/εT
toe−1

ektoe−1
, 0 < ε

T ≤ ε
T
toe,

0, εT ≤ 0,

with ε
T = lT/lT

s −1. (21)

Active Force The active force Fa is controlled by the muscle activation a and the normalized muscle
length l

M

Fa = aFM
0 e−(l

M−1)2
. (22)

Passive Force The passive force FP is controlled by the muscle length lM as FP = Fm
o FP(l

M
), where

l
M
= lM/lM

0 is the normalized muscle length, and

FP(l
M
) =


1+ kP

εM
0
(l

M− (1+ εM
0 )), if l

M
> (1+ εM

0 ),

ekP(l
M−1)/εM

0

ekP
, if l

M ≤ (1+ ε
M
0 ).

(23)

Contractile force The force in the contractile element FCE is calculated from tendon force FT and passive
force FP as follows

FCE =
FT

cosα
−FP. (24)
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Fiber Velocity The fiber velocity l̇M is calculated as l̇M = (5+ 5a)lM
0 l̇

M
, where l̇

M
is the normalized

contraction velocity

l̇
M
= Ψ1(lM,a) =



FCE

ε

(
ε−Fa

Fa +
ε

A f
+ξ

+
Fa

Fa +ξ

)
− Fa

Fa +ξ
, if FCE < 0,

FCE−Fa

Fa +
FCE
A f

+ξ
, if 0≤ FCE < Fa,

FCE−Fa
1

FM
len−1

(2+
2

A f
)(FaFM

len−FCE)+ξ

, if Fa ≤ FCE < 0.95FaFM
len,

fv0 +
FCE−0.95FaFM

len

FaFM
len

( fv1− fv0), if 0.95FaFM
len ≤ FCE,

(25)

where

fv0 =
0.95FaFM

len−Fa
1

FM
len−1

(2+
2

A f
)0.05(FaFM

len)+ξ

, fv1 =
(0.95+ ε)FaFM

len−Fa
1

FM
len−1

(2+
2

A f
)(0.05− ε)(FaFM

len)+ξ

. (26)

Activation dynamics The activation dynamics a is modeled as the first order lowpass filter of the exci-
tation signal u, with Tact = 0.01 and Tdact = 0.04 are the activate time and the deactivate time

ȧ = Ψ2(a,u) =

{
(u−a)/Tact if u > a,
(u−a)/Tdact if u≤ a.

(27)

4.2. Muscle Control
The entire system dynamics has a cascade form and can be summarized as follows

ẍ(t) = f (x(t), ẋ(t))+g(x(t), ẋ(t))u(t), (28a)

l̇M
i = Ψ1(lM

i,ai), (28b)

ȧi = Ψ2(ai,ui), i = 1, . . . ,6 (28c)

where Equ. (28a) is the arm dynamics defined in Section (2) and (3) with x = [α1(t) α2(t)]T are the joint
angle, u(t) = [∑6

i=1 r1
i Fi(lM

i ) ∑
6
i=1 r2

i Fi(lM
i )]T is the control moments. The back-stepping algorithm can be

applied to control the system (Khalil (2002)). First, suppose that the set of desired forces {Fdi =Fi(lM
di ), i=

1, ...,6} is available after solving the optimal force distribution step as described in section (2) and (3), and
also suppose that their time derivative Ḟd is available. Then, the desired muscle length lM

d and its time
derivative l̇M

d can be computed using the Equ. (20) and (21) (we skip presenting due to the length constraint).
Back-Stepping Level 1 Let ud =

[
∑

6
i=1 r1

i Fdi ∑
6
i=1 r2

i Fdi
]T be the desired joint moment that satisfy

V1 =
1
2

sTs⇒ V̇1 = sT( fn +gnud + d̄− ẍd + cė)≤ 0. (29)

Back-Stepping Level 2 Let elM i , lM
i − lM

di be the error between the actual muscle length lM
i and the desired

muscle length lM
di . The control moment u can be rewritten in term of the desired ud and the error elM i as

u = ud +

[
∑

6
i=1 r1

i ∇Fi(lM
di )elM i

∑
6
i=1 r2

i ∇Fi(lM
di )elM i

]
, where ∇Fi(lM

d ),
Fi(lM

i )−Fi(lM
di )

elM i
. (30)

Differentiating the Lyapunov function V2 =
1
2 sTs+ 1

2 ∑
6
i=1 elM

i

2 along the trajectories (29) and (30) yields

98-6



V̇2 = sT( fn +gnu+ d̄− ẍd + cė)+
6

∑
i=1

elM
i
(Ψ1(ai)− l̇M

d ) = V̇1 +
6

∑
i=1

elM
i
(Ψ1(ai)− l̇M

d + sTgnri∇Fi(lM
di )), (31)

where ri , [r1
i r2

i ]
T. Therefore, the control activation adi is chosen such that V̇2 ≤ 0, as

adi = Ψ
−1
1 (−kaisign(elM

i
)+ l̇M

di − sTgnri∇Fi(lM
di )) (32)

where kai is the chosen control gain. Equ. (32) can be approximated by a quadratic equation in term of adi
and solved analytically or by using the NewtonRaphson method.
Back-Stepping Level 3 Suppose adi is available after solving the Equ. (32), let eai , ai− adi be the error
between the actual activation ai and the desired activation adi. The muscle contraction velocity are rewritten

Ψ1(ai) = Ψ1(adi)+∇Ψ1(adi)eai, where ∇Ψ1(adi) =
Ψ1(ai)−Ψ1(adi)

eai
. (33)

Differentiating the Lyapunov function V3=
1
2 sTs+ 1

2 ∑
6
i=1 e2

lM
i
+ 1

2 ∑
6
i=1 e2

ai
along the trajectory (31),(33) yields

V̇3=V̇1+
6

∑
i=1

elM
i
(Ψ1(ai)−l̇M

di + sTgnri∇Fi(lM
di ))+

6

∑
i=1

eai(Ψ2(ui)− ȧdi) =V̇2+
6

∑
i=1

eai(Ψ2(ui)− ȧdi+elM i∇Ψ1(adi))

(34)
Define zi ,−kuisign(eai)+ ȧdi−elM

i
∇Ψ1(adi), the excitation control signal ui is chosen such that V̇3 ≤ 0, as

ui = Ψ
−1
2 (−kuisign(eai)+ ȧdi− elM

i
∇Ψ1(adi)) =

{
Tact(ai + zi) if zi > 0,
Tdact(ai + zi) if zi ≤ 0,

(35)

5. Simulation Results
We ran the experiment using the interface between OpenSim and Simulink (Mansouri & Rein-

bolt (2012)). The simulation parameters are given in Tab.1 and Tab.2, with initial states lM(0) =
[0.1138 0.1138 0.0858 0.134 0.1321 0.1157] and ai(0) = 0, i= 1, . . . ,6, α j(0) = α̇i(0) = α̈i(0) = 0, j = 1,2.
Fig. 5 shows that the responses converge to the reference trajectories after 2s with the chosen parameters
C = [3 11], α = 0.5, β = 0.02. Fig. 7 shows the required moments and muscle forces, respectively. Fig. 8
shows the required muscle length and muscle excitation, respectively. The tracking error depends on the
chosen boundary of saturate function. In this example, the error boundary is 1◦, and the maximum error
reported is 1.5◦ at the shoulder.This is because the muscles BIClong, BICshort, TRIlong contributes to both
the shoulder and elbow moments. This leads to the slight vibration at the shoulder angle to achieve the small
error at elbow angle. Moreover, the gain can be adjusted to reduce the error. Figure 6 shows the system
response when the control parameters are chosen as C = diag([4 40]), α = 0.5, β = 0.02 and the saturate
boundary is 0.1◦. The maximum settling error is 0.9◦ at the shoulder and 1◦ at the elbow.

Fig. 5. System output using the control gain C = [3 11],
α = 0.5, β = 0.02.

Fig. 6. System output using the control gain C = [4 40],
α = 0.5, β = 0.02.
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Fig. 7. Requires moments and optimal forces Fig. 8. Muscle length and activation response

6. Conclusion
In this paper, we proposed an adaptive controller to control the arm movement through a simulation

study. First, we proposed an ASMC to derive the driving moments. Secondly, we implemented the Gen-
eralized Reduced Gradient method to optimally distribute forces to each muscle. Finally, we used another
SMC to drive the activation and excitation. Because the model dynamics had a cascade form, the back-
stepping technique was implemented to compute the muscle excitations. The simulation study showed that
our controller can handle the parametric uncertainties. Comparing to the Computed Muscle Control toolbox
provided in OpenSim which uses the PID controller, the proposed method does not require tuning process.
Therefore, the controller can provide an accurate and robust method to compute muscle control for the task
human body motion tracking in OpenSim. Future work could include incorporating into the controller an
observer to estimate the muscle length and activation. The ultimate goal is to use FES to stabilize arm
tremors.
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