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Abstract - The fundamental frequency of a robotic manipulator typically depends on its configuration. Configurations
with the lowest or the highest fundamental frequency are important as they are indicative of the weakest and the
strongest configurations in the dynamical sense. This paper describes the use of semi-definite programming (SDP) in
finding these two configurations of a robotic manipulator. One key contribution of this work is the computation of the
fundamental frequency and its gradient with respect to the configuration variables from the solution of a single SDP.
This contribution is used in a search algorithm to identify these two configurations of an exemplary Stewart Platform.
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1. Introduction
A typical goal in robotic manipulator design is a wide operating frequency (Ferretti et al., 1999; Park

et al., 2006). This requirement is equivalent to having a high fundamental frequency below which the ma-
nipulator can enjoy good dynamical performance. Consequently, approaches that increase the fundamental
frequency of mechanisms or structures have been proposed. Examples of such approaches (Zhang et al.,
1988; Sivan and Ram, 1996; Lim and Park, 2009; Portman et al., 2000; Menon et al., 2009; Wang et al.,
2004) include optimization over stiffness or inertia matrices of robotic arm (Lim and Park, 2009) or parallel
mechanisms (Portman et al., 2000; Menon et al., 2009), optimization over placement of support for plates
and other structures (Wang et al., 2004), minimum vibration mechanism design (Sivan and Ram, 1996) and
many others.

The fundamental frequency of a robotic manipulator is the smallest eigenvalue, λmin, of the correspond-
ing dynamical equations. While the exact dynamical equations can be complex, the determination of λmin

involves only the mass and stiffness matrices of the system. Specifically, λmin is the smallest eigenvalue of
the generalized eigenvalue problem of the form

(λM(q)−K(q))v = 0 (1)

where M(·),K(·) ∈ Rn×n and q ∈ Rn is the generalized coordinate of the mechanism. The design objec-
tive is to have as high a value of λmin as possible over some appropriate design variable, x. For example, x is
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the coordinate of the placement of a support for plate (Wang et al., 2004) while x is the height (h) of Stewart
platform (Menon et al., 2009). A typical problem is when x is q. In that case, one is concerned with the
configuration of the robotic manipulator that has the lowest fundamental frequency. Clearly, strengthening
the manipulator at this configuration means an overall increase in the operating frequency. Optimization of
λmin has a long history with many different approaches. Some early approaches optimizes approximations of
λmin due to computational considerations. For example, the Rayleigh-Ritz approximation (Pierce and Varga,
1972) is an upper bound of λmin and can be efficiently computed. In the special case where the dependency
of the M and K matrices to x is linear or affine, optimization of λmin(x) is a convex optimization problem
which can be efficiently computed using semi-definite programming (SDP) (Lim and Park, 2009). Unfortu-
nately, the dependence of M and K on x, in the general case, is nonlinear. Many of the convex optimization
routines are therefore not suitable for its solution. A direct approach is to consider the nonlinear optimiza-
tion problem of the form minq λmin(M−1(q)K(q)) over the operating range of q. Such an approach has
been quite well researched (Nelson, 1976; Mills-Curran, 1988) and expressions of the derivatives of eigen-
values and eigenvectors, including the case of repeated eigenvalues are available. However, it is not clear
how the smallest eigenvalue can be efficiently computed. One way is to convert the λmin(M−1(q)K(q)) into
λmax(K−1(q)M(q)) and solve using power method. However, convergence of power method is known to be
slow (Trefethen and Bau, 1997), especially when the two largest eigenvalues are near. Clearly, approaches
(most factorization-based approaches) that computes all the eigenvalues of M−1(q)K(q) are undesirable.
This paper considers the general approach of optimizing λmin(q) over q as a nonlinear programming prob-
lem (NPP). The algorithmic solution of NPP requires the values of λmin(q) and its derivative, dλmin

dq (q), at any
admissible value of q. This paper shows how these two quantities can be obtained, with minimal additional
computations, from a single solution of a SDP at a specific choice of q. The presentation is for optimization
over q but can be easily adapted for variable x via standard chain rule of differentiation.

The rest of this paper is organized as follows. This section ends with the notations used. Section
2Problem Formulationsection.2 shows the formulation of the eigenvalue maximization problem. Section
3Expressions of λmax and its derivativessection.3 shows the main expressions of λmin and dλ

dq from the solu-
tion of the SDP. Section 4The Stewart Platform Problemsection.4 shows an example of finding the weakest
configuration of a Stewart Platform mechanism within its workspace. Conclusions are drawn in section
5Conclusionssection.5.

The notations used are standard. Matrices and vectors are represented as A ∈ Rn×m and b ∈ Rn respec-
tively, with Ai j and bk being their corresponding (i, j)-th and k-th elements. Symmetric positive definite
matrices, P, is indicated by P � 0 with |P|, λmin(P) and λmax(P) being its determinant, minimal and the
maximal eigenvalues respectively. In refers to the identity matrix of order n. A slight abuse of notation
is adopted for convenience: λmin,λmin(A) refer to the smallest eigenvalue in general and that of a specific
A matrix respectively while λmin(q) := λmin(A(q)) refers to the smallest eigenvalue as a function of q. The
same holds true for λmax. A diagonal matrix is indicated as diag{a11, · · · ,ann}with aii being the i-th diagonal
element. Other notations are introduced when needed.

2. Problem Formulation
The mathematical representations of robotic manipulators can be derived from the Lagrangian approach

and has a well-known set of dynamical equations of motion, represented by

M(q)q̈+C(q, q̇)q̇+K(q)q = 0 (2)

where q ∈Rn is the vector of standard generalized coordinate, M(q),K(q) ∈Rn×n are the mass and stiffness
symmetric matrices respectively and C(q, q̇) is the matrix of Coriolis and centrifugal forces.
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The natural frequencies of the mechanism is governed by the M and K matrices and the associated
eigenvalue problem is that given by (1Introductionequation.1.1). Since M and K are both positive definite,
all the eigenvalues of (1Introductionequation.1.1) are real with real eigenvectors. Unfortunately, M and K
matrices are generally nonlinear functions of q. A more computationally amiable form is to exploit the
positive definiteness of M (or similarly K) and convert (1Introductionequation.1.1) using

0 = |λM(q)−K(q)|= |λ In−M−1/2(q)K(q)M−1/2(q)| := |λ In−A−1(q)| (3)

where A(q) := M1/2(q)K−1(q)M1/2(q) is a symmetric and positive definite matrix. In addition,
λmin(A−1(q)) = 1

λmax(A(q))
, a property that holds for any matrix. This conversion to λmax allows its nu-

merical solution to be obtained as a SDP problem since wT (λmaxIn−A(q))w = wT (λmaxIn−UΣUT )w =
wTU(λmaxIn − Σ)UT w ≥ 0 for any w ∈ Rn where A = UΣUT is the singular value decomposition of A.
Correspondingly, the SDP problem, for a fixed value of q, is

min
t

t (4a)

s.t. tIn−A� 0 (4b)

With t being the only variable, the optimization problem (4Problem Formulationequation.2.4) is convex and
efficient numerical routine exists for its solution. In particular, several codes (Vandenberghe and Boyd, 1996,
1995; Boyd and Vandenberghe, 2004) using the primal-dual interior point method exist and are particularly
useful for solving such a problem.

Using the SDP problem of (4Problem Formulationequation.2.4), the overall optimization for finding the
weakest configuration becomes{

maxq λmax(A(q))
s.t. q

i
≤ qi ≤ q̄i, i = 1, · · · ,n ⇔

{
minq −λmax(A(q))
s.t. q

i
≤ qi ≤ q̄i, i = 1, · · · ,n (5)

where q
i

and q̄i are simple operating bounds on q. Hence, each function call of λmax(A(q)) invokes the SDP
problem of (4Problem Formulationequation.2.4) as a subroutine.

Remark 1. An immediate extension of the above is the problem of finding the strongest configuration, defined
by the configuration with the highest fundamental frequency. Using the above development, this problem can
be formulated as {

minq λmax(A(q))
s.t. q

i
≤ qi ≤ q̄i, i = 1, · · · ,n

3. Expressions of λmax and its Derivatives
When the primal-dual interior point algorithm is used for the numerical solution of (4Problem

Formulationequation.2.4), a dual variable or the Lagrange variable in the form of a positive semi-definite
symmetric matrix, Λ � 0, is available at the solution of (4Problem Formulationequation.2.4). Suppose the
optimal values of t and Λ are t∗ and Λ∗ respectively. The optimal dual variable satisfies the following two
conditions:

(t∗In−A)Λ∗ = 0 (6)

1−
n

∑
i=1

Λ
∗
ii = 0. (7)
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The first is the complementary slackness condition of the SDP problem while the second corresponds to the
constraint of the dual optimization problem.

The condition of (6Expressions of λmax and its derivativesequation.3.6) is of particular importance. The
trivial solution where Λ∗ ≡ 0 is ruled out by condition (7Expressions of λmax and its derivativesequation.3.7).
Hence, any non-zero column of Λ∗ is an eigenvector corresponding to the smallest eigenvalue t∗. The
following two cases are considered:

3.1. Isolated λmin
If t∗ is an isolated eigenvalue of A, then rank(Λ) = 1. Let v be any one of these non-zero columns. It follows
from (6Expressions of λmax and its derivativesequation.3.6) that

(t∗In−A)v = 0 (8)

⇒ dt∗

dq
v− dA

dq
v =−(t∗In−A)

dv
dq

(9)

Now, pre-multiply vT to both sides of (9Isolated λminequation.3.9), then

⇒ dt∗

dq
vT v− vT dA

dq
v =−vT (t∗In−A)

dv
dq

(10)

=−
[
(t∗In−A)T v

]T dv
dq

=−
[
(t∗In−A)v

]T dv
dq

= 0

where the last equation follows from (8Isolated λminequation.3.8) and the fact that A is symmetric. As a
result, we have

⇒ dt∗

dq
=

vT dA
dq v

vT v
(11)

Clearly, dt∗
dq depends on dA

dq whose expression is

dA
dq

=
dM0.5

dq
K−1M0.5 +M0.5 dK−1

dq
M0.5 +M0.5K−1 dM0.5

dq
. (12)

The expressions of dM0.5

dq and dK−1

dq are typically not easily available from matrices M(q) and K(q). Instead
only dK

dq and dM
dq are available from M(q) and K(q). Hence, additional steps are needed in the form of

dK−1

dq
=−K−1 dK

dq
K−1 (13)

dM0.5

dq
M0.5 +M0.5 dM0.5

dq
=

dM
dq

(14)

The last equation can be rewritten as a linear equation with unknown variables corresponding to the elements
of dM0.5

dq and can be solved with the knowledge of dM
dq . In fact, it can be shown that the solution obtained is

unique, see Remark 2rem.2. Similarly, dK−1

dq is obtained from (13Isolated λminequation.3.13) knowing dK
dq .
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Remark 2. Equation (14Isolated λminequation.3.14) can be rewritten as Āx̄ = b̄ for some appropriate Ā ∈
Rn2×n2

and b̄ with x being the n2 elements of dM0.5

dq , also known as the Lyapunov equation. The eigenvalues of
Ā are (µi +µ j) where µi and µ j are any two eigenvalues of M0.5. Since M0.5 is positive definite, none of its
eigenvalues is zero and this implies that Ā has no zero eigenvalue, leading to the uniqueness of the solution
of dM0.5

dq .

In many applications, it may also be useful to know the derivatives of eigenvector at λmax. The re-
maining of this subsection shows the procedure for doing so. A few well-known properties are first stated.
The eigenvector of A corresponding to λmax(A) is also the eigenvector of λmin(A−1). This follows because
(λmaxIn−A)v = A(A−1− 1

λmax
In)v = 0. Furthermore, when v is the eigenvector of M−1/2KM−1/2, w := M0.5v

is the eigenvector of M−1K for the same eigenvalue. Hence, the derivative of eigenvector of M−1K is

dw
dq

= M0.5 dv
dq

+
dM0.5

dq
v

where dM0.5

dq is that given by (14Isolated λminequation.3.14). From (9Isolated λminequation.3.9) and the fact
that (t∗I−A) is singular, it follows that

dv
dq

= ȳ+αyn

where ȳ ∈ Rn is a basic solution and yn ∈ Rn is any null space vector of (t∗In−A) and α is any real con-
stant. More exactly, let Y ΣAY T be the singular value decomposition of (t∗In−A) with Y = [y1 y2 · · ·yn] and
ΣA = diag{σ1,σ2, · · · ,σn−1,0}. Then, ȳ = Yn−1Σ

−1
n−1Y T

n−1(dA/dq− dt∗/dq)v where Yn−1 = [y1 y2 · · ·yn−1]

and Σ
−1
n−1 := diag{σ−1

1 ,σ−1
2 , · · · ,σ−1

n−1}. The choice of α can be resolved to achieve a unique dv
dq . Since

eigenvector corresponding to an eigenvalue is only unique up to a constant multiple, a useful choice of nor-
malization of eigenvector is to chose maxi|vi| = 1. Let i∗ = arg maxi|vi|. The constant α can be obtained
such that dvi∗

dq = 0.

3.2. Non-isolated λmin
Due to the symmetry in many mechanism design, the possibility of having repeated eigenvalues corre-

sponding to λmax(A) exists. Suppose λmax(A) is repeated r times. This means that the rank(Λ) ≤ r. The
more likely situation is that rank(Λ) = r and Λ contains r linearly independent columns that spans the eigen-
subspace corresponding to λmax(A). It is also possible that rank(Λ) < r although such cases are rare. The
details of obtaining the expressions of the derivatives of repeated eigenvalues and eigenvectors will not be
covered here since they have been presented in (Nelson, 1976; Mills-Curran, 1988; Friswell, 1996; Andrew
and Tan, 1998) and the connections made above on the solution of the SDP problem.

4. The Stewart Platform Problem
This section shows derivations of the M and K matrices of a Stewart Platform mechanism but with no

intention to develop the full dynamical equations. The derivation is also brief as these expressions are quite
well known (Portman et al., 2000; Menon et al., 2009). The M and K expressions are then used in (5Problem
Formulationequation.2.5) to identify the weakest configuration in its workspace.

Stewart Platform (SP) is a parallel mechanism well-known for accomplishing tasks that require high-
precision, high load carrying capacity and good dynamic performance in three-dimensional space (Merlet,
2006; Portman et al., 2000; Menon et al., 2009). As shown in Fig. ??, the Stewart Platform has two rigid
bodies, the base and the platform, connected through six extensible legs. Two reference frames are needed:
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Fig. 1. The Stewart Platform

Sb is a fixed frame centered at O and attached to the base while Sp is a moving frame with origin G fixed at
the center of mass of the platform with axes aligned with its principal axes.

The generalized coordinate q is {x,y,z,α,β ,γ} where (x,y,z) defines the position of G from O under
frame Sb, indicated by the vector g in the figure and (α,β ,γ) is the z-y-x Euler angles that defines the
orientation of Sp with respect to Sb. Using the coordinate systems set up, the vector that defines the i-th leg
is

ui(q) = ( ~OPi− ~OBi) =

 x
y
z

+R(α,β ,γ)pi−bi (15)

where pi and bi are the vectors from G to Pi and O to Bi respectively (as shown in figure) and R(α,β ,γ) :=
Rz(α) ·Ry(β ) ·Rx(γ) is the product of the rotation matrices along z,y and x axes by the respective Euler
angles.

Like most dynamical analysis (Portman et al., 2000; Menon et al., 2009) of Stewart Platform, the fol-
lowing assumptions are made: the platform is a rigid body while the legs have negligible mass with small
deflections in the elastic region.

The inertial matrix of the platform can be shown to be (Menon et al., 2009)

M = diag(m,m,m, I1, I2, I3) (16)

where m is the mass and I1, I2, I3 are the moments of inertia with respect to the principal axes of the platform
respectively. Other off-diagonal terms exist when the full dynamical equations are considered but they are
not elements of the inertial matrix. Clearly, M does not depend on q and ∂M

∂q = 0.
To obtain expression of the stiffness matrix, the relationship between the length of the leg, `i and q is

needed. From (15The Stewart Platform Problemequation.4.15),

`2
i (q) = uT

i (q)ui(q) (17)
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since `i is the length of ui. Correspondingly, the velocities of the length, ˙̀, and the generalized coordinates,
q̇, are related through the well-known Jacobian matrix relation in the form of

˙̀= J(q)q̇ (18)

where ˙̀= [ ˙̀1, · · · , ˙̀6]T and q̇= [ẋ, ẏ, ż,ωx,ωy,ωz]
T . The procedure of getting the expression of J is quite well-

known (Merlet, 2006). It is obtained by taking derivatives of (17The Stewart Platform Problemequation.4.17)
together with (15The Stewart Platform Problemequation.4.15). Following it, the expression is

J(q) =

 ûT
1 sT

1
...

...
ûT

6 sT
6

 (19)

where

ûi := ui/`i, (20)

si := ~OPi× ûi (21)

with si being the moment of ûi relative to O. It is also well-known from (18The Stewart Platform
Problemequation.4.18) that

δ`= J(q)δq. (22)

In addition, the relation between the forces acting on the platform by the legs, f = [ f1, · · · , f6]
T , and the

components of the generalized forces (Γ) is

Γ = JT (q) f (23)

The legs are commonly modeled as axial springs. Hence, the force of the ith leg, fi, is proportional to its
elastic deformation δ`i or fi = ki δ`i, where ki =

EA
`i

is the stiffness of each leg and E, A are the Youngs
modulus and cross-sectional area of the leg. In matrix form,

f = Dδ` (24)

where, D = diag(k1, · · · ,k6). From (22The Stewart Platform Problemequation.4.22),(24The Stewart Plat-
form Problemequation.4.24) and (23The Stewart Platform Problemequation.4.23), it follows that Γ =
(JT (q)DJ(q)) δq := K(q)δq. Hence, stiffness matrix is

K(q) = JT (q)DJ(q). (25)

Taking the derivatives of the above with respect to qk,

∂K(q)
∂qk

=
∂JT (q)

∂qk
DJ(q)+ JT (q)D

∂J(q)
∂qk

, (26)

with
∂J
∂qk

=


∂ ûT

1
∂qk

∂ sT
1

∂qk
...

...
∂ ûT

6
∂qk

∂ sT
6

∂qk

 (27)
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where

∂ ûi

∂qk
=

`i
∂ui
∂qk
− ∂`i

∂qk
ui

`2
i

. (28)

The expression of ∂ui(q)
∂qk

can be computed directly from (15The Stewart Platform Problemequation.4.15)

while that of ∂`i
∂qk

follows from differentiating (17The Stewart Platform Problemequation.4.17) which leads
to

∂`i

∂qk
=

1
2

(
ûT

i (q)
∂ui(q)

∂qk
+

∂ui(q)
∂qk

T

ûi

)
Suppose ~OPi = (rxi ,ryi ,rzi)

T . The expression of si of (21The Stewart Platform Problemequation.4.21) can be
rewritten, using standard equivalence for cross product of two vectors, as

si = ~OPi× ûi ≡ [ ~OPi]ûi

where [ ~OPi] =

 0 −rzi ryi

rzi 0 −rxi

−ryi rxi 0

. With this,

∂ si

∂qk
=

∂ [ ~OPi]

∂qk
ûi +[ ~OPi]

∂ ûi

∂qk
(29)

and equations ∂K
∂q can now be computed from (26The Stewart Platform Problemequation.4.26)-(29The Stew-

art Platform Problemequation.4.29).
As a summary, expressions of −∂λmax(q)

∂q and ∂A(q)
∂q are needed for the NPP problem of (5Problem

Formulationequation.2.5). Suppose the SDP primal and dual solutions at a given q are (t∗,Λ∗). Then,

−λmax(q) = −t∗ with gradient −∂λmax(q)
∂q = −

v∗T ∂A(q)
∂q v∗

v∗T v∗ , where v∗ is any column of the Λ∗ and ∂A(q)
∂q is

computed from (12Isolated λminequation.3.12)-(14Isolated λminequation.3.14) and (26The Stewart Platform
Problemequation.4.26)-(29The Stewart Platform Problemequation.4.29).

4.1. Numerical Results
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Fig. 2. Scheme for the calculation of the SP natural frequencies.

The parameters of the Stewart Platform used in this numerical study are taken from (Port-
man et al., 2000) and the platform is shown in Fig. 2Scheme for the calculation of the SP natural

99-8



frequencies.figure.caption.2. The centers of the joints Pi and Bi lie on circles with the radius of rp = 0.156m
and rb = 0.169m, respectively. The arrangement of the six legs on the base is axisymmetric; the ends of
any two consecutive legs are separated by 60◦. The other end of the legs are arranged to meet platform
at 120◦ apart. The axial stiffness constants of all legs are set to be ki = 106N/mm and the height of the
platform at its neutral position from the base, h̄, is 0.105m. The rest of the parameters are m = 25.32kg,
Ix = Iy = 0.4167 and Iz = 0.2598kgm2. The range of admissible q for which the stiffness model is valid is
Q := {(x,y,z,α,β ,γ) : |x| ≤ 0.05, |y| ≤ 0.05, |z− h̄| ≤ 0.01, |α| ≤ 5π

180 , |β | ≤
5π

180 , |γ| ≤
5π

180}.
The nonlinear optimization (5Problem Formulationequation.2.5) uses the BFGS algorithm (Kelley, 1999;

Byrd et al., 1995; Nocedal and Wright, 2006) with box constraints for its solution. BFGS is a quasi-Newton
method, in which the Hessian matrix of second derivatives need not be evaluated directly. Instead, the
Hessian matrix is approximated using rank-one updates specified by previous gradient evaluations.

The SP considered here is symmetrical with respect to 3 planes, each of them containing the z-axis
of {Sb} and one of the three dashed-lines shown in Fig. 2Scheme for the calculation of the SP nat-
ural frequencies.figure.caption.2. Hence, the search for the weakest configuration can be restricted to
Q̄ := {(x,y,z,α,β ,γ) : x≤ 0.05,−0.05≤ y≤ 0,x− 1√

3
y≥ 0, |z− h̄| ≤ 0.01, |α| ≤ 5π

180 , |β | ≤
5π

180 , |γ| ≤
5π

180}.
Any given configuration in this region means that 5 other configurations exist in Q, each obtained by the
image of the given configuration reflected about one of the 3 planes of symmetry. Hence, multiple local
minima exist in Q due to the symmetry.

There is also a possibility that local minima exist within Q̄ not due to symmetry. Our approach to miti-
gate this effect is to invoke the BFGS algorithm with multiple initial configurations. These initial configura-
tions correspond to points of a uniform grid taken over Q̄. Clearly, probability of finding the global optimal
increases with the number of initial points. The results of this strategy on SP are presented in Table 1Compu-
tational results for minimizing λmin table.caption.3. These results are obtained using the “cvx” optimization
routine on the Matlab 7 platform and the projected-BFGS package (Kelley, 2011). The computations are
performed on a dual-core Macbook Pro with 3.2 GHz processor and 4 GB of memory.

Table 1. Computational results for minimizing λmin

No. of λmin No. of distinct Wall time

initial points (×103) local minima (sec.)
10 12.3457 5 5.253
20 12.2470 8 8.373
30 11.7036 12 12.740
50 11.3308 18 21.201
100 11.3308 24 45.840
500 11.3308 30 225.357

Remark 3. The BFGS algorithm terminates under two situations: (i) a configuration q in the interior of Q̄
with dλmax(q)

dq = 0; (ii) q is at the boundary of Q̄ while satisfying the Karush-Kuhn-Tucker optimality condi-
tions. All the solutions shown in Table 1Computational results for minimizing λmin table.caption.3 are of
type (ii). This fact also suggests that the optimal solution is a result of the constraints - further deterioration
of the fundamental frequency results if the constraints are relaxed by enlarging Q.

In summary, the weakest configuration found in Q̄ is

q∗ = (0.05,−0.05,(h̄−0.01),0.0873,−0.0873,−0.0873),
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shown in Fig. 3Optimal configuration q∗figure.caption.4, for which λmin(A−1(q∗)) = 1
t∗ = 11.3308×

103 rad2/s2. It is possible to compute, albeit with some careful manipulations, the other 5 configurations
obtained from q∗ by reflecting about the 3 symmetrical planes. These 5 configurations are

q2 =


0.05
0.05

h̄−0.01
−0.0873
−0.0873

0.0873

 ,q3 =


−0.0183

0.0683
h̄−0.01

0.0010
0.1915
0.0965

 ,q4 =


−0.0183
−0.0683
h̄−0.01
−0.0011

0.1915
−0.0965

 ,q5 =


−0.0683

0.0183
h̄−0.01

0.0485
0.0745
0.0142

 ,q6 =


−0.0683
−0.0183
h̄−0.01
−0.0485

0.0745
−0.0142

 .

It can be verified that only q2 is within Q and satisfies condition (ii) of Remark 3rem.3. The other
configurations, q3, · · · ,q6 are all outside of Q and does not constitute a valid optimal solution of (5Problem
Formulationequation.2.5).
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Fig. 3. Optimal configuration q∗

As mentioned in Remark 1rem.1, it is also possible to find the strongest configuration of the SP that
has the maximal fundamental frequency. The numerical results for the computation of this configuration
is presented in Table 2Computational results for maximizing λmintable.caption.5. Again by increasing the
number of initial points, the solution obtained is q̄ = (0,0, h̄−0.01,0,0,0).

Table 2. Computational results for maximizing λmin

No. of λmin No. of distinct Wall time

initial points (×103) local minima (sec.)
10 39.3281 6 5.230
20 39.4830 10 9.098
30 39.6752 16 17.0192
50 39.7496 26 25.0484
100 39.8461 35 54.1743
500 39.8461 44 235.457

The approach provided here is likely to be more efficient than those using multiple grid search methods
or (gradient-free) stochastic search algorithms (see for example (Menon et al., 2009)). The gradient evalua-
tion described in Section 3Expressions of λmax and its derivativessection.3, speeds up the search algorithm
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significantly resulting in fast convergence of the algorithm. In the above example, the average time needed
for the convergence of the algorithm to a local minima is less than half a second (wall time).

5. Conclusions
This paper describes the use of the semi-definite programming (SDP) in finding the weakest and the

strongest configurations of a mechanism. Computation of the fundamental frequency at any configuration
and its gradient with respect to the configuration variables obtained from a single SDP solution are discussed.
These are used in a BFGS algorithm to find the weakest and strongest configurations of a Stewart Platform.
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