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Abstract- Path planning problem is a widely applied yet complex problem in robotics. It aims to find the shortest
collision-free path in a given environment for the robot’s movement from an initial to a target configuration. One
popular technique to solve it is Probabilistic Roadmap Planner (PRM), which samples the environment to form an
approximate representation of the problem space. Using uniform sampling can reduce the efficiency of this method
since not all the regions of environment are similar in terms of their complexity. In this paper, we propose a novel
approach to address this problem, which includes two steps. First, the problem environment is clustered such that
more complex regions are separated form simple ones. In the second step, the sampling is performed which is more
biased towards the clusters which contain complex regions. Our experimental results indicate that using the notion of
clustering can significantly boost the performance of PRM techniques, specially in complex environments.
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1 Introduction
Robotic path planning has received significant amount of attention recently due to its broad applications.
Informally speaking, the goal of this problem is to find a path for a robot from an initial position to a final
position while avoiding collision between the robot and the obstacles (Choset et al., 2005). The path planning
problem is formally defined using: (1) C as the space of all possible configurations of the robot (2) C f ree as
the set of configurations not colliding with obstacles of environment (3) C \C f ree as the obstacle space (4)
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cinit ,cgoal is the starting and goal configuration. The goal of path planning is to find an efficient path (set of
configurations) in C f ree from the cinit to cgoal .

The path planning problems is an interesting yet hard-to-solve problem; in general the path planning
problem is PSPACE- complete (Canny et al., 1988). As a result, solving this problem is usually intractable
in high dimensional spaces. Nonetheless, due to its broad applications, many heuristics have been proposed
recently to solve path planning problem in complex environments. Most of these methods can be catego-
rized into three groups: cell decomposition methods, potential field methods and sampling based methods
(Latombe et al., 1991).

Probabilistic roadmap (PRM) planner (Kavraki et al., 1996) is a popular and widely-used path planning
algorithm which is a member of sampling based methods. PRM and its variants generate samples to con-
struct an undirected graph over the configuration space where each vertex represents a configuration of the
robot without any collision (a member of C f ree) and each edge demonstrates a collision-free path between
configurations. This graph can be thought of as a representation of the free space which is called probabilistic
roadmap.

During the first phase of PRM (preprocessing), planner samples the configuration space; corresponding
to each sample located in C f ree, PRM algorithm creates a vertex in the roadmap. For each vertex such as
q, set N(q) includes the vertexes in the vicinity of q such that the distance between vertexes in N(q) and q
is less than a threshold. Then, for each pair of neighbour configurations if the straight line between them
is collision free, the edge between them is added to the roadmap graph. There are fast methods to check
whether a path between two configurations is collision free or not, for example to check that a connection
line is collision free, the points on the line with equal distances, specified by parameter called resolution, are
checked to be in the free space (Geraerts et al., 2004).

The second phase of PRM is query phase where the roadmap is used to solve path planning queries. The
PRM planners are usually multi-query planners and the same roadmap can be used to solve many queries.
The result of each query (if exists) is a path between the initial and goal configurations. First, the two
configurations are added to the roadmap. Then, the shortest path between them in the graph is returned as
the result of the corresponding query. The query phase fails if connecting initial and final configurations to
the roadmap fails or if these configurations do not belong to the same connected component in the roadmap.
The actual work is done during the preprocessing phase when the roadmap is constructed, which turns out
to be the most time-consuming part of the PRM planners.

In a configuration space with obstacles, the shortest path between initial and final points usually traverses
the edges of the obstacles. Therefore, the roadmap in the configuration space with obstacles should deem
of the points near the edges of the obstacles to increase the ability of PRM to find a near optimal path. For
this reason, random sampling exhibit poor efficiency in configurations spaces with obstacles. Consequently,
incorporating methods that augment the chance of producing points near the obstacles are of interest. One
of these methods is Gaussian sampling (Boor et al., 1999) which acts quite well in generating random points
near the obstacles. This technique aims at generating two samples near each other such that one is located is
the free space while the other one is in C \C f ree.

Most of the PRM planner variations work effectively in simple environments (Amato et al., 1998 Hsu
et al., 2003). Too often though, their performances degrade when the environment contains elaborate areas
like narrow passages between the obstacles. Narrow passages have relatively small volume comparing to
other regions of configuration space; the coverage of such positions with random points is a problem in the
PRM approach. Several roadmap construction methods have been proposed to deal with this issue. The
most notable ones are filtering and retraction methods (Denny et al., 2014, Lien et al., 2003, Wilmarth
et al., 1999). One of the filtering methods to increase the density of random points in narrow passages is
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Randomized Bridge Builder (RBB) (Hsu et al., 2003 Sun et al., 2005) sampling, which is developed on top
of a test called Bridge Test. RBB is considered as an efficient algorithm for finding narrow passages only
with a geometric operation.

To reach a more effective roadmap, one needs to do adaptive sampling. In other words, sampling in
different regions of configuration space should be done concerning properties of regions and their influence
on the optimal path. To this aim, first we propose configuration space clustering which randomly splits
the configuration space into regions (which may overlap). Then, these regions are clustered based on their
features. In other words, different regions are evaluated according to a set of properties and those which
exhibit similar properties fall into a same cluster. Later, we propose Configuration Space Clustering based
Sampling (CSCS) algorithm as an enhancement of hybrid method which adaptively samples each region of
configuration space according to the corresponding cluster. Our method enhances the hybrid method (Sun
et al., 2005) (one of the popular and basic PRM methods) by finding complex regions of workspace and
treating each region according to its complexity. Complex and more critical regions are investigated more
thoroughly.

As a proof of concept, CSCS is applied to different simulated environments. Experimental results indi-
cate that CSCS needs less time to build the road map and leads to roadmaps with fewer vertexes which both
result in more efficient results in comparison with hybrid method. As a consequence, it seems the proposed
clustering method can be used to improve other existing sampling methods such as RRT and its variants
(LaValle et al., 1998 Karaman et al., 2010).

This paper is organized as follows. In Section 2 the concept of randomized configuration space clustering
and its goals are described. The CSCS algorithm is presented in Section 3. Experimental results are presented
and discussed in Section 4. Conclusion and future works are given in Section 5.

2 Randomized Configuration Space Clustering
An efficient algorithm in PRM has following three properties: 1. the output of the algorithm is close to
the optimal path. 2. Time complexity of algorithm is reasonable. 3. It is easy to implement. To reach the
two first goals one should do adaptive sampling. What is meant by adaptive sampling is that all regions of
configuration space are not equally important. Those which are probable to have narrow passages or edges
are more noteworthy. As a consequence, sampling in these parts must be fine.

Using adaptive sampling, the roadmap will have a small size which can help routing algorithms to reach
a shorter paths as well as minimizing the run time of the planner. Plus, it increases the probability of finding
a feasible path from initial point to final point.

Non-adaptive sampling methods such as hybrid algorithm (Sun et al., 2005) have the following problems:

• Consider the entire regions of configuration space equally-important whereas concentrating on com-
plex regions can lead to more efficient results.

• Needs too many random points to cover narrow passages and edges of obstacles.

• Unable to distribute random points uniformly through narrow passages and edges.

• Insufficient distribution of random points around the entrance and exit of narrow passages.

• Unable to find any path in complex environments in efficient time.

• Have a same behaviour for workspaces with different complexity and properties.
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Fig. 1: OV of different circle regions.

• Running bridge test and Gaussian test for all generated samples. In fact all samples are treated equally
which is computationally inefficient because those which have small probability of lying on the narrow
passages do not need bridge and Gaussian tests while others do.

To reach adaptive sampling, characteristics of all regions of configuration space should be realized and
then sampling must be performed according to these characteristics. For this reason, some regions are
selected randomly from the configuration space and characteristic and complexity of each region is evaluated
through three steps.

First, γ number of circles (sphere and hyper-sphere in higher dimensions) are generated in configuration
space with randomly-selected centres. Second, status of each center and its boundary are explored to roughly
approximate characteristics and complexity of the region inside the circle. Third, an occupied value (denoted
by OV) is assigned to each circle shaped region according to its characteristic. This value determines the
approximate complexity of that region. That is, regions with higher OV have higher likelihood of containing
narrow passages and edges.

OV for each circle regions is computed as follows:

1. If the entire boundary of region is in C f ree and the center is on occupied space then OV is equal to
1(Fig 1.a).

2. If the entire boundary and the center of a region are in C f ree then OV is equal to 1
2 (Fig 1.b).

3. If whole of boundary of region is in occupied space then OV is equal to zero (Fig 1.c and 1.d).

4. Otherwise the occupied value is equal to the number of continues part of boundary in occupied space
(Fig. 1.e and 1.f).

For the sake of simplicity in implementation as well as reducing time complexity, it is essential use
simple geometric operations. Clearance is of these operations which determine the status of a configuration.
If it is a member of C f ree Clearance function returns zero otherwise it returns one. Computing OV requires
identifying status of boundaries which seems to need a more complex geometric operation. To avoid that,
the boundary of each region is discretized with equal distances (Fig. 2.b), δ , and the clearance operation is
used to identify the status of boundaries.

3 Sampling by Configuration Space Clustering
In previous section by using configuration space clustering concept it was shown how to cluster different
regions of configuration space based on their OVs. If we manage to control the quantity of samples in each
region based on the OV, we have taken an effective step toward adaptive sampling.
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3.1 Algorithm
Here, we propose sampling algorithm called Configuration Space Clustering based Sampling (CSCS) which
tries to consider different samplings in each region of configuration space based on the complexity of the
corresponding region. The pseudo code of this algorithm is shown in algorithm 1. First CSCS randomly
chooses a number of circles with fixed radiuses in the configuration space. Then it samples in each region
based on the OV (γ denotes the number of circles and L denotes the length of radius).

Algorithm 1 CSCS
1: for i = 1→ γ do
2: Pick a point (X ,Y ) from C uniformly as the center of region
3: B = Boundary(X ,Y,δ )
4: OV = Occupied value(B,X ,Y )
5: T = f (OV )
6: if OV 6= 0 & OV 6= 1

2 then
7: for t = 1→ T do
8: Generate a random point P, in the circle with the center (X ,Y ) and radious L
9: if CLEARANCE(P) is true then

10: add P to roadmap set
11: end if
12: RBB(P) and Gaussian(P)
13: end for
14: end if
15: if OV 6= 1

2 then
16: for t = 1→ T do
17: A random point P, generated on the boundary with the center located at (X ,Y )
18: RBB(P) and Gaussian(P)
19: end for
20: end if
21: end for

During each of CSCS iterations, a point is randomly chosen in the configuration space as the center of a
circular region (line 2). To compute OV of the corresponding region, first its boundary is discretized (line 3),
δ describes the distance between the point in discretizing process of CSCS, then function occupied value
computes the value of OV (according to procedure proposed in the previous section) and T number of
samples are chosen in the corresponding region (lines 7 to 22). Moreover, occupied value adds a set of
configurations to the roadmap (Fig. 2.c). Value of T is assigned based on f (OV) (line 5) which can be
a lookup table. If sampled configurations are members of C f ree they are added to the roadmap (line 10).
Clearance function is use to determine whether a configuration is a member of C f ree or not. Gaussian and
Bridge tests are applied to free configurations to add new samples to the roadmap (line 12).

If OV value of a region is equal to 1
2 then some random samples are generated on the boundary line and

both tests are applied as well (lines 15 to 20). Fig. 2 illustrates a schematic of some operations of CSCS.

3.2 Parameter Assignment
CSCS uses three parameters L, δ and γ as well as the function f which must be determined before applying
the algorithm. Increase in γ , δ and function f beside decrease in lead to more efficient results but also lead
to growth in the roadmap size which results in more computations. Each of these parameters has a special
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(a) (b) (c) (d) (e) (f)

Fig. 2: Schematic of CSCS operations. In (c) and (f) a subset of configurations are added to the roadmap set.

meaning and influence on the algorithm. Therefore, if some information about the configuration space is
available beforehand, it is feasible to find a good setting for these parameters. Otherwise, one approach is to
use different settings of parameters and find the one that fits the best to the problem (similar to meta-heuristic
methods).

3.3 Properties
Table 1 shows how CSCS algorithm with adaptive sampling deals with some deficiency of non-adaptive
methods. In a nutshell, CSCS does not generate samples blindly, and consider each region complexity and
acts accordingly.

3.4 High Dimensions
CSCS exhibits variable behaviour over the configuration space. This is a desirable property specially when
the environment is complex or we are facing with high dimensional problems. Besides, CSCS is easy to
implement since it incorporate simple structure and instructions. Therefore, it seems that using CSCS for
high dimensional problem is a straightforward task. But as it turns out, computing OVs in problems with
more than 4 dimensions is usually intractable which may turn CSCS into an inefficient method in these set
of problems.

4 Experiment and Results
This section is devoted to experimental study of CSCS in comparison with hybrid algorithm (Sun et al.,
2005). Both methods were studied in same environments as well as equal resolutions and thresholds. Each
method was executed 30 times in each of the 3 different environments which are shown in Fig. 3.

Efficiency and duration of each algorithm is dependent to the number of Clearance calls, Bridge and
Gaussian (B & G) functions calls as well as number of initial random points and roadmap size. As a result, to
gauge the performance of both algorithms, we measured each of these parameters over different executions.
Means and variances of these parameters are shown in Table 2. To have a statistical comparison, ANOVA
has been used. P-values (PV) of statistical tests are also shown in Table 2.

According to Table 2, in 2nd and 3rd configuration spaces, CSCS has reached more efficient results
in terms of length with fewer operations (number of initial random points, number of Bridge, Gaussian
and Clearance calls). But it has not made any significant improvement in the first environment. Thus, as
environments gets more complex, CSCS performance boosts.

Another measure of performance in PRM algorithms is the probability of a response for a query which
is sometimes referred to as probabilistic completeness. Here, both algorithms were run in 3 environments
shown in Fig. 3 and the percentages of queries with a result are shown in Table 3.
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Table 1: Checks existence of edges and narrow passages only in regions which have more complexity.

Problem How CSCS solves it

Considering almost all regions of configuration space
similarly without noting the complexity of parts and
their effects on the optimal path.

Using random clustering in configuration space and
sampling based on clusters properties.

Needs many random points to cover narrow passages
and edges of obstacles.

Producing more random points in complex regions in
comparison with other areas as a result of assigning
high values of f (OV ) to such regions.

Unable to distribute random points uniformly though
narrow passages and edges. Insufficient distribution of
random points around the entrance and exit of narrow
passages. Unable to find any path in complex environ-
ments in efficient time

Points are distributed in each part separately and num-
bers of points in important regions are very high be-
cause of high values of f (OV ). Therefore, it is more
reliable for complete and uniform coverage of narrow
passages and edges.

Running bridge and Gaussian tests for all generated
samples. In fact all samples are treated equally which
is computationally inefficient because those which have
small probability of lying along the narrow passages do
not need bridge and Gaussian tests while others do.

Checks existence of edges and narrow passages only in
regions which have more complexity.

(a) (b) (c)

(d) (e) (f)

Fig. 3: Instances of roadmap graphs constructed with Hybrid (top row) and CSCS (bottom row) with corre-
sponding outputs in three different environments.
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Table 2: Comparison between the outputs returned by CSCS and hybrid algorithm in three configuration
spaces (CS)

TABLE II.  COMPARISON BETWEEN THE OUTPUT PARAMETERS OF CSCS AND HYBRID ALGORITHM IN THREE CONFIGURATION SPACES (CS) 

CS Method 

Path Optimality Efficiency 

path length CLEARANCE calls roadmap size B & G calls initial random point 

Mean Std PV Mean Std PV Mean Std PV Mean Std PV Mean Std PV 

1 
hybrid 0.9524 0.011 3.2

4 

536164 40659.2 1.67 

-e8 

976.76 135.01 
0.63 

720 0 9.99- 

e16 

7200 0 
0 

CSCS 0.9349 0.040 675503 109231 963.86 60.92 1756 518.94 865.6 55.9 

2 
hybrid 2.4930 0.017 0.1

7 

2468399 931424 
0.00 

2212.9 38.23 
0 

5102 0 
0.21 

11500 0 
0 

CSCS 2.4899 0.021 1730259 366892 1687.63 88.02 4419 2997.5 2028 95.6 

3 
hybrid 0.9961 0.018 0.0

0 

1176409 86901.5 
0.37 

1039.8 104.99 
0.18 

4824 0 
0.03 

6600 0 
0 

CSCS 0.9757 0.026 1198822 1183356 1069.93 68.67 4021 2004.2 1223 79.6 

 

Efficiency and duration of each algorithm is dependent 

to the number of Clearance calls, Bridge and Gaussian (B 

& G) functions calls as well as number of initial random 

points and roadmap size. As a result, to gauge the 

performance of both algorithms, we measured each of 

these parameters over different executions. Means and 

variances of these parameters are shown in Table II. To 

have a statistical comparison, ANOVA has been used. P-

values (PV) of statistical tests are also shown in Table II. 

According to Table II, in 2
nd

 and 3
rd

 configuration 

spaces, CSCS has reached more efficient results in terms 

of length with fewer operations (number of initial random 

points, number of Bridge, Gaussian and Clearance calls). 

But it has not made any significant improvement in the 

first environment. Thus, as environments gets more 

complex, CSCS performance boosts. 

Another measure of performance in PRM algorithms is 

the probability of a response for a query which is 

sometimes referred to as probabilistic completeness. 

Here, both algorithms were run in 3 environments shown 

in Fig. 3 and the percentages of queries with a result are 

shown in Table III. 

V. CONCLUSION AND FUTURE WORKS 

In this paper, we proposed clustering concept in PRM 

method. This concept has been introduced as a tool 

toward adaptive sampling and can be combined with 

other existing sampling algorithms which may lead to 

improvement in results. Experiments on proposed 

adaptive sampling method with clustering, CSCS, show 

effectiveness of the algorithm both in terms of time 

efficiency and path optimality (especially in complex 

environments) which is a result of using adaptive 

sampling.  

Our interest is in developing combination of other 

existing sampling methods [12,13] with CSCS or 

proposed clustering method to enhance the results which 

may lead to decrease in run time and variance of outputs. 

However, CSCS suffers from parameter dependency. 

Using learning and heuristic methods to solve this 

problem is in our future research list. Moreover, as 

mentioned before, calculating OV for high dimensional 

problems is still challenging and among our current 

research. 

TABLE III.  SUCCESS RATE OF FINDING A FEASIBLE PATH BY HYBRID 

AND CSCS ALGORITHM 

REFERENCES 

[1] H. Choset, K.M. Lynch, S. Hutchinson, G. Kantor, W. 

Burgard, L.E. Kavraki, and S. Thrun, “Principles of Robot 

Motion: Theory, Algorithms, and Implementations,”. MIT 

Press, Boston, 2005. 

[2] J. F. Canny, “The Complexity of Robot Motion Planning,” 

MIT Press, Cambridge, M, 1988. 

[3] J. C. Latombe, “Robot Motion Planning,” Kluwer 

Academic Publishers, Boston, MA, 1991. 

[4] R. J. Geraerts, M. H. Overmars, “Sampling Techniquesfor 

Probabilistic Roadmap Planners,” Intell. Auton. Sys., vol. 

8, pp. 600–609, 2004. 

[5] V. Boor, M. H. Overmars, F. van der Stappen, “The 

Gaussian sampling strategy for probabilistic roadmap 

planners,” In Proc. IEEE Int. Conf. Rob.Autom., pp. 1018–

1023, 1999. 

[6] D. Hsu, T. Jiang, J. Reif, Z. Sun, “The bridge test for 

sampling narrow passages with probabilistic roadmap 

planners,” In: Proc. IEEE Int. Conf. Rob. Autom., 2003. 

[7] N. M. Amato, O. B. Bayazit, L. K. Dale, C. Jones, D. 

Vallejo, “OBPRM: an obstacle-based PRM for 3D 

workspaces,” In: Proc. Int. Wkshp. on Alg. Found. of Rob. 

(WAFR), pp. 155–168, 1998. 

[8] J. M. Lien, S. L. Thomas, N. M. Amato, “A general 

framework for sampling on the medial axis of the free 

space,” In Proc. IEEE Int. Conf. Rob.Autom., vol. 3, pp. 

4439-4444, 2003. 

[9] S. A. Wilmarth, N. M. Amato, P. F. Stiller, “MAPRM: a 

probabilistic roadmap planner with sampling on the medial 

axis of the free space,” In Proc. IEEE Int. Conf. Rob. 

Autom., pp. 1024–1031, 1999. 

[10] D. Hsu, J. Tingting, J. Reif, S. Zheng, “The bridge test for 

sampling narrow passages with probabilistic roadmap 

planners,” In: Proc. IEEE Int. Conf. Rob. Autom., vol. 3, 

pp. 4420–4426, 2003. 

[11] S. Zheng, D. Hsu, J. Tingting, H. Kurniawati, J. H. Reif, J. 

“Narrow passage sampling for probabilistic roadmap 

planning,” IEEE Trans. Robot., vol. 21, pp. 1105–1115, 

2005. 

[12]  S. M. LaValle, “Rapidly-Exploring Random Trees A New 

Tool for Path Planning,” 1998. 

[13] S. Karaman and E. Frazzoli, “Incremental sampling-based 

algorithms for optimal motion planning,” arXiv preprint 

arXiv, pp. 1005.0416, 2010. 

  

Hybrid CSCS  

70 % 90 % Configuration space 1 

86.66 % 96.66 % Configuration space 2 

90 % 93.33 % Configuration space 3 

Table 3: Success percentage of finding a feasible path by hybrid and CSCS algorithm

Configuration Space CSCS Hybrid
1 %90 %70
2 %96.66 %86.66
3 %93.33 %90

5 Conclusion and Future Works
In this paper, we proposed clustering concept in PRM method. This concept has been introduced as a tool
toward adaptive sampling and can be combined with there existing sampling algorithms which may lead to
improvement in results. Experiments on proposed adaptive sampling method with clustering, CSCS, show
effectiveness of the algorithm both in terms of time efficiency and path optimality (especially in complex
environments) which is a result of using adaptive sampling.

Our interest is in developing combination of other existing sampling methods (Karaman et al., 2010) with
CSCS or using the proposed clustering method to enhance the results which may lead to decrease in run time
and variance of outputs. However, CSCS suffers from parameter dependency. Using learning and heuristic
methods to solve this problem is in our future research list. Moreover, as mentioned before, calculating OV
for high dimensional problems is still challenging and among our current research.
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