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Abstract- Compliance is an important feature for service robots but also for robots in industrial applications to in-
crease human machine interaction safety. While active compliance is online adaptable and easy to control its dynamic
response is determined by the sampling rate and the response rate of the controller. In contrast, passive compliance is
inherent to the system. It responds naturally fast to any perturbation exerted on the robot independently of the con-
troller. In this paper an extension to the DMP framework is introduced which facilitates the generation of trajectories
for passive compliant link drives using reinforcement learning. The compliance of the joint actuators is preserved
entirely during motion as well as at the goal position. The proposed approach is evaluated in simulation using a sim-
plification of the common articulated configuration with 2 DOF and passive compliant link drives. Experiments are
presented for point-to-point movements and different load case scenarios. The results demonstrate that the proposed
approach is capable of generating trajectories for point-to-point movements to trained and untrained goal positions as
well as for trained and untrained load cases.
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1 Introduction
Human machine interaction and collaboration is becoming increasingly important with advancing technol-
ogy not only in service robots but also in industrial applications. Yet the majority of robotic systems is
designed using stiff and inelastic joint actuators. While stiff systems can be controlled with proven control
theoretical methods, such systems represent a possible threat to humans in contact situations during human
machine interaction (Zinn et al. 2004). Hence, they are usually found caged and separated from humans. To
create systems for safer human robot interaction a leightweight construction together with a low interface
stiffness is beneficial. The latter can be achieved by incorporating elastic properties into the link drive. Here,
two approaches and a combination of both are applicable. Active compliance uses a controlled virtual elas-
ticity and allows the application of control strategies such as impedance control (Hogan 1985) or the unified
passivity-based control framework (Albu-Schaeffer et al. 2007). The compliance of the drive can be adapted
on demand to environmental requirements. Instead of using a real elastic element inside a link drive, active
compliance simulates compliance by control. For this reason, active compliance can still be dangerous dur-
ing human machine interaction regarding controller outage, control errors and control frequency. In contrast,
passive compliance uses a real series elasticity inside the link drives to achieve elastic behaviour. This makes
interaction safety independent to the above mentioned control errors. Different actuators incorporating pas-
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sive compliance have been proposed like the Serial Elastic Actuator (SEA) (Pratt & Williamson 1995), an
elastic joint drive for robotics applications based on a sensorized elastomer coupling (Paskarbeit et al. 2013)
or a compact soft actuator unit as used in the child humanoid robot “iCub” (Tsagarakis et al. 2009). Al-
ternative actuator types like pneumatic muscles also feature passive compliance as used for instance in the
humanoid muscle robot torso called ZAR5 (Boblan & Schulz 2010). Although actuators with inherent series
elasticity reduce the risk during human machine interaction, this is achieved at the expense of controllability.
Standard feedback based control approaches use feedback from the drive side of the joint to generate motor
commands (motor torque) for the gear side of the joint. Such a control loop will inevitably react with an
increase of motor torque if the observed drive side is perturbed by an obstacle blocking its path. Elastic prop-
erties of passive compliant limbs are canceled out to some extent by such a behaviour. A possible strategy
to sustain the elastic properties of passive compliant actuators during operation is presented in this work.
The proposed approach uses reinforcement learning to train a trajectory generating process which can be
adapted to different goal positions and load scenarios using a mixture approach. The trajectory is generated
for the gear side of passive compliant joint actuators in such a way that the drive side of the joint approaches
a desired goal state under consideration of boundary conditions along the path. This trajectory generating
process is based on an extension of the original Dynamic Movement Primitives formulation by Ijspeert et al.
(2003, 2013).

2 Learning Movement Patterns
Dynamic Movement Primitives (DMPs) as suggested by Ijspeert et al. (2002) are pattern generators for
point-to-point and rhythmic movements. For point-to-point movements DMPs can be described as point
attractive systems, specified by start state, goal state and movement time, which is the time in which the
start state has to be transformed into the goal state. The trajectory connecting start and goal state can be
of an arbitrary shape defined by a policy whose parameters can be learned. This policy is represented by a
non-linear function.
Since the introduction of DMPs by Ijspeert et al. (2002) improvements, extensions and simplifications have
been introduced. Kober et al. (2010) proposed a system that allows to change the target velocity of the
movement while maintaining the overall duration and shape in order to hit a moving target. Mülling et al.
(2013) refined this system and introduced “Modified Motor Primitives for Striking Movements” together
with a framework that enables a robot to learn basic cooperative table tennis using a mixture of movement
primitives.
The proposed extension to the DMP framework in this text is based on the latest DMP formulation by Ijspeert
et al. (2013) and Schaal et al. (2007).

2.1 Dynamic Movements Primitives
DMPs are based on a 2nd order dynamical system, analog to a spring-damper system. This 2nd order system
connects the fixed goal state and the moved degree of freedom, e.g. a rotatory link drive and constructs a
point attractive system with the goal state as the attractor as depicted in Fig. 1(a). The shape of the trajectory
transforming the start state into the goal state can be manipulated by a non-linear function f1 which is add to
the 2nd order dynamical system:

τ ż = αz(βz(g− y)− z)+ f1, τ ẏ = z (1)

with τ being a temporal scaling factor, g the goal state, αz representing the damping constant of the system
and the product of αz and βz representing the spring constant. Position, velocity and acceleration of the
moved degree of freedom are given by q = y, q̇ = 1

τ
z and q̈ = 1

τ
ż. The parameters αz and βz must be

chosen such that the spring-damper system is critically damped under the assumption f1 = 0. To avoid
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(a) (b)

Fig. 1: Graphical interpretation of the 2nd order dynamical system of (a) a Dynamic Movement Primitive (DMP) as
described by Ijspeert et al. (2013) with the attached non-linear function f1. The system connects the fixed goal state
(e.g. target position of rotational link drive) with the moved degree of freedom (e.g. current position of a rotational link
drive). The moved DOF is pulled towards the goal state by the 2nd order dynamical system. The non-linear function f1
is used to alters the monotonic movement of the DOF to produce a more complex trajectory until it fades out at the end
of the movement. (b) the reformulation of the DMP framework proposed in this work. A further non-linear function f2
is attached to the moved DOF. The 2nd non-linear function does not fade out at the end of the movement. Instead it is
designed to reach a constant non-zero value to compensate the influence of gravitation near the end of the movement
when the first non-linear function fades out.

explicit time dependency which is convenient to reach a high robustness of movements to perturbations
and interactions with the environment an additional dynamical system called canonical system (Ijspeert
et al. 2002) is introduced. This system is used to represent phases of the movement:

τ ẋ =−αxx (2)

x is called the phase variable and represents time in the framework of DMPs. Similar to time, x is monotonic,
but decreases and saturates at 0. τ is the same time constant as in eq. (1) and is used to scale the progression
of x according to the duration of movement T . αx defines the progression of x and should be chosen such
that x ≈ 0 at time T. The non-linear function f1 is usually defined as a function approximator and depends
on the phase variable x, the goal state g and the start state y0:

f1(x,g,y0) =
∑

N
i=1 ψiwix

∑
N
i=1 ψi

(g− y0) (3)

ψi = e−hi(x−ci)
2

(4)

where N is the number of Gaussian basis functions used and ψi is a Gaussian basis function with center ci and
bandwidth hi. The start state is defined by y0. Due to the factor x in eq. (3), the non-linear function f1 fades
out at the end of the movement. The remaining 2nd order dynamical system guarantees the convergence of
the moved degree of freedom to the desired goal state. The amplitude term g− y0 is used to generalize the
trajectory so that any start-goal state combination within the workspace of the DMP can be used.
The shape of the non-linear function f1 is defined by the weights wi, which scale the amplitude of the
Gaussian kernels. If the desired shape of the trajectory is known the weights w can be learned using locally
weighted learning techniques (LWL) such as Locally Weighted Regression (Atkeson et al. 1997) or Locally

160-3



Weighted Projection Regression (Vijayakumar & Schaal 2000). To adapt f1 to a trajectory with an unknown
shape reinforcement learning techniques like PI2, Contextual REPS (Kupcsik et al. 2013) and Parametrized
Skills Framework (Da Silva et al. 2012) can be used.

2.2 Modified Motor Primitive for gravitation compensation
In general, the trajectory generated by DMPs is tracked by a feedback based controller e.g. a PID controller
from classical control theory using feedback from the drive side of the actuator. Since the actuators output is
controlled the impact of gravitation on the actuator plays a subordinated role and does not necessarily need
to be considered explicitly during control. Simultaneously the effective elasticity of the compliant actuator
is reduced by such a control approach. To maintain the full potential of passive compliant actuators it is
necessary to decouple the controller from the feedback of the drive side. This can be achieved by generating
a trajectory for the gear side of a compliant actuator instead of generating it for the drive side. Tracking
of the trajectory can then be realized by a feedback based controller using feedback of the gear side (see
Fig. 2(a)).
The DMP framework utilizes two processes to generate trajectories, the 2nd order dynamical system and
the attached non-linear function f1. The general movement direction of the system is determined by the
dynamical system which can be influenced by the spring and damping constants αz and βz, the temporal
scaling factor τ , the start state y0 and the goal state g. Any deviation from this general movement direction
(complex shape) is generated by f1 which can be modified by the weights w. Due to the canonical system, f1
converges to zero when approaching the end of the movement time T . Therefore, without further measures,
the drive side of a compliant link drive will not reach the desired target due to gravitational forces.
To generate a trajectory for the gear side which transforms the start state of the drive side to a desired goal
state it is possible to alter the goal state of the DMP. Mülling et al. (2013) and Kober et al. (2010) have
proposed solutions to dynamically alter the goal state. However, compliant actuators introduce a further
dynamics component to the system and an increase of the degrees of freedom used in a robotic limb turns
the influence of gravitation on a compliant actuator to a high dimensional problem. Since the non-linear
function f1 vanishes at the end of the movement a simple alternation of the goal state might not be sufficient.
The approach proposed in this work is an extension to the DMP framework using its existing structure. It
introduces a second non-linear function f2 to compensate the effects of the gravitation on the link drive as
depicted in 1(b). This non-linear function is added to the DMP formulation from equation (1):

τ ż = αz(βz(g− y)− z)+ f1 + f2, τ ẏ = z (5)

The definition of the second non-linear function

f2(x) =
∑

M
i=1 ψiwi

∑
M
i=1 ψi

(6)

ψi = e−hi(x−ci)
2

(7)

follows the definition of f1 in equation (3) except that it does not use the phase variable x as multiplicative
term. Hence the non-linear function does not fade out at the end of the movement. To produce a quasi
constant output at the end of the movement, the bandwidths of the Gaussian basis functions have to be al-
tered accordingly. The non-linear functions f1 and f2 should be learned independently of one another. This
ensures that f1 adapts to the trajectory in an optimal way and f2 only has to compensate the short comings
of f1. In the simplest case this is only a constant output at the end of the movement at time T .
Since the influence of the gravitation does not scale with the distance between start state and goal state, f2
does not generalize. Nonetheless, a quasi-generalization can be reached using a mixture approach. For this,
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(a) (b)

Fig. 2: (a) Visual representations of a physical connection between gear side and drive side consisting of spring and
damper in parallel inside a compliant joint. All following joints and the system load are attached to the gear side. This
is depicted by the mass m. (b)Articulated configuration of a robot limb mounted in a hanging position. The wrist joint
is negligible because the impact of gravitation on the other joints (joint0 to joint2) is only insignificantly influenced by
the posture of the wrist. Due to its orientation gravitation has no impact on joint0 either, hence it can be neglected too.
The remaining robot limb has two DOF. The origin of the reference coordinate system can be located in the center of
joint1. The later on trained goal states and load case scenarios are indicated by the two cards in the right side of the
figure.

an equally spaced grid is established inside the workspace of the end effector. Each grid node represents a
goal state and load case and is associated with a non-linear function f2k which was trained for this specific
goal state and load case, with k = 1 . . .K and K being the number of grid nodes. Since the first non-linear
function f1 still generalizes, only the 2nd non-linear function needs to be linked to the respective grid node.
To generate trajectories to unlearned targets, non-linear functions associated with the appropriate grid nodes
are mixed based on mixing coefficients b. These mixing coefficients can be determined using linear inter-
polation or e.g. linear regression. The appropriate mixing strategy depends on the distance between the grid
nodes. The reformulation of DMP framework utilizing the mixing approach is defined as follows:

τ ż = αz(βz(g− y)− z)+ f1 +bf2, τ ẏ = z (8)

where b = (b1,b2, . . .bK) is a vector of mixing coefficients, f2 = ( f21 , f22 , . . . , f2K )
T is a vector of non-linear

functions.

3 Evaluation
In section 2 an extension to the DMP framework by Ijspeert et al. (2013) was introduced which allows the
generation of trajectories for passive compliant actuators while maintaining their elastic properties and to
reduce the risk during human machine interaction. Furthermore, the extension was designed to cope with
gravitational influences appearing as a consequence of the described trajectory generation process. In the
following the experimental setup is described and the results are evaluated.
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3.1 Experimental Setup
The proposed approach is evaluated on a simulated robotic limb with passive compliant joint actuators.
The series elasticity inside the joints is modelled as a critically damped linear spring-damper system with a
spring constant of k = 10 and a damping constant of c = 6. The robotic limb has two DOF and is based on a
simplification of the common articulated configuration with six DOF as depicted in Fig. 2(b). Three of these
six DOF are used by the wrist attached to the end of the limb and have a negligible influence on the impact
of gravitation on the remaining joints. Furthermore, there is no gravitational influence on the first link drive
joint0 if mounted in a standing or hanging position. Based on these simplifications the robot limb could be
reduced to 2 DOF. Regardless of the simplifications made, the proposed approach can be scaled to higher
dimensional problems easily due to the underlying DMP framework.
The segment connecting joint1 and joint2 has a length of 265 mm and the segment connecting joint2 and
the end effector has a length of 275 mm. The segments and the end effector are modelled as massless. The
origin of the coordinate system of the robot limb is located at the center of the joint axis of joint1. For the
experiments two differend loads of 300 g and 600 g were attached to end effector. The joint angles of joint1
and joint2 are restricted to θ1 = [−π

2 ,
π

2 ] and θ2 = [0, 3π

4 ].
The grid of 18 goal states in three rows (3×6 goal states) for the mixture of the non-linear functions f2k was
positioned on the same horizontal level as joint1. The first node of the first row at (0.25 m, 0.05 m) and the
sixth node of the third row at (0.5 m, −0.05 m). The grid nodes were equally distributed with an inter node
distance of 50 mm.
For the learning of the non-linear functions f1 and f2k the reinforcement learning technique PI2 was applied.

3.2 Evaluation in Simulation
To evaluate the proposed approach the learning of the non-linear functions was organized in two consecutive
phases. At first a single non-linear function f1 was selected from 20 training trials. Each training trail was
performed with 100 PI2 updates. Afterwards, the non-linear functions f2k were trained for each grid node
and each load case using the same procedure as with the first non-linear function. In total 36 non-linear
functions were trained. DMPs were initialized using spring and damping constants αz = 25 and βz = 12.5
and a movement time of 2 s. Training as well as evaluation experiments were started from a hanging posture
of the robot limb at rest with θ1 = −π

2 , θ̇1 = 0, θ2 = 0, θ̇2 = 0 and the end effector at pee = [0m,0.537m]
and ṗee = [0 m

s ,0
m
s ].

For the evaluation the grid of goal states was resampled with a resolution of 10 mm and the load cases were
linearly interpolated at a regular interval of 75 g (300 g, 375 g, 450 g, 525 g and 600 g). For each sampled
goal state and each load case a trajectory was generated using a mixture of the eight nearest neighbours in x,
y and z (load) direction as depicted in Fig. 3(f). The mixing coefficients b where determined using trilinear
interpolation.
The Figures 3(a-e) show the distance-to-target error surfaces for each load case. It can be seen that a mixture
of non-linear functions can generate trajectories to untrained targets inside a grid of trained goal states.
Furthermore, the comparison of individual error surfaces shows that the proposed approach not only works
for untrained goal states but also for untrained load cases.

4 Conclusion
In this paper, an extension to the DMP framework was proposed, that enables the generation of trajectories for
passive compliant link drives while maintaining their elastic properties completely. This goal was achieved
by introducing a further non-linear function to the DMP framework. This additional non-linear function
can be trained with the same methods already used with DMPs. By the introduction of a mixture approach
trajectories can be generated for untrained targets within a grid of trained goal states.

160-6



(a) (b) (c)

(d) (e) (f)

Fig. 3: (a-e) Distance-to-target error during evaluation of goal state and load case mixture. (f) Visual representation of
trilinear interpolation between the eight nearest neighbours. The Cartesian goal states are located on the plane spanned
by the x- and y-axes. The z-axis is used to indicate the load cases. The volume vi of the cuboid defined by the surfaces
A, B and C represents the mixing coefficient bi associated with grid node p1,2,2 in the form of bi = 1− vi based on a
normalized inter-node spacing of the grid.

The approach was evaluated successfully on a simulated robotic limb. It was shown that trajectories could
be generated for untrained goal states as well as for untrained load cases. Figure 3(a) and (e) show results
for learned load cases and (b)-(d) for interpolated loads. The distance to target error never exceeded 0.01 m.
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