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Abstract– Silicon-based micro-cantilever beams, due to their simplicity of fabrication and versatility are candidates 

for a large range of engineering applications. Their static and dynamic behaviour under the influence of various 

types of loadings were investigated extensively during last two decades. The object of the present work is to 

examine the non-linear differential equations that models the dynamic performance of single and double cantilever 

beams subjected to an electrostatic field. The main focus of the study is the evaluation of the critical pull-in voltage, 

i.e. the voltage closed to the snap-on of the micro-structure. Pull-in voltage, a topic of great concern in MEMS 

literature due to the wide range of application where cantilever-type structures interact with electric field, is 

investigated from a theoretical point of view. The highly stiff one degree of freedom non-linear differential equation 

modelling the dynamic behaviour of the cantilever under electrostatic loading can be satisfactorily studied by 

adopting a stiffness model for the considered designs. Only the ISODE Maple algorithm can satisfactory solve 

numerically the fore mentioned equation due to its adaptive time-step selection mechanisms. The stiffness model is 

chosen from the ones found in literature [insert references here]. However, the most suitable stiffness model for the 

static study proves to be different from the optimum model involved in the dynamic study. The influence of 

excitation voltage on pulling voltage and the effect of structural damping on large deflection are investigated 

numerically. A closed-form time response to step-voltage is derived and pull-in voltage calculated for an undamped 

system and compared to the one analytically determined by solving the reduced form of the non-linear modelling 

ODE.  
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1. Introduction 
Pull-in voltage is an important parameter for silicon-type micro-cantilever beams subjected to electric 

fields. Its value gives important information regarding the limitation of the investigated system, that is, 

about the moment when the structure becomes unstable. Empirically it is observed (Schiele et al., 

1998a), that the beam, attracted by the fixed electrode, approaches the pull-in voltage when it reaches a 

position that corresponds to 2/3 of the original gap between the beam and the fixed electrode. There are 

many articles studying the operation of micro-fabricated cantilever structures interacting with different 

types of electric fields, both from a theoretical and experimental point of view.  
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In general, the pull-in voltage is found from the differential equation that describes the dynamic 

behaviour of the cantilever beam in an electrostatic field. The governing differential equation can be 

obtained using either Hamiltonian (Hu, et al., 2004) or energy (Chen, et al., 2009) methods. Due to the 

high non-linearity, several approaches are employed with the purpose of the simplification of these 

equations. In literature, finite element method is one of the most extensive tactics adopted for the 

numerical determination of the pull-in voltage (Busta, et al., 2001). Taylor series are used to linearize 

the governing differential equation (Younis, et al., 2003). Perturbation method (Zhang, et al., 2002) 

and Runge-Kutta algorithms are other modalities of solving the derived Duffing equations that model the 

dynamic behaviour of the cantilever beam subjected to both electric field and harmonic excitation. 

Another approach assumes small deflections of the structures involved and the results are compared with 

the experimental data (Schiele, et al., 1998b). Dimensionless continuum beam theory or orthogonal 

functions type Taylor series (Kuang, et al., 2004) can be employed in the derivation of the governing 

equations describing the dynamic performance of the micro-cantilever. In the small deflection approach, 

the error is found to be directly proportional with the length of the beam and decreases when the structure 

is excited by a potential significantly below the snap-on value (Hung, et al., 1999). The effects of the 

width and thickness of the cantilever on its resonant frequency are also the subject of several theoretical 

and experimental studies (Chowdhury, et al., 2005). 

 

2. Theory 
The dynamics of an electrostatic cantilever-type actuator, using the lump mass hypothesis is 

described by the equation (1). Figure 1 illustrates the considered simplified model by using a mass-

spring-damper system: 

 

 
d2y(t)

dt2 + 2ξωn
dy(t)

dt
+ ωn

2y(t) =
f(t)

m
             (1) 

  

In equation (1) f(t) represents the electrostatic force, m the mass of the beam, y(t) the deflection and  

𝜉 is the damping factor (
C

m
= 2ξωn). 

 

 
 

Fig. 1. The schematic of a mass-spring damper system of a beam 

 

The value of the force exerted due to the electrostatic effect between the two parallel surfaces is 

significant in micro-structures. Its expression can be obtained from the energy balance and is given by: 

 

 f(t) =
ε0AV2

2(g−2y(t))2
                                                                                                                       (2) 

 

In equation (2) ε0 represents the absolute permittivity of the medium between the surfaces, g is initial 

distance between beam and substrate, A is area of the beam and V is the voltage. 
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The equation (1) can be rewritten as: 

 

  
d2y(t)

dt2
+ 2ξωn

dy(t)

dt
+ ωn

2y(t) =
ε0AV2

2m(g−2y(t))
2                          (3) 

 
Where the initial conditions (initial speed at reference position and time) for this ODE are assumed to 

be the following: 

 

 y|t=0 = 0           and           
dy

dt
|

t=0
= v0                                                                         (4) 

 

There is no analytical formulation in our knowledge to express the solution of the non-linear equation 

(4) in closed form. The micro dimensions of the structures involved contribute to the stiffness of the 

ODE. The current approach used to solve the equation (3) is the numerical one. The present study 

proposes a method of reduction of the order of the governing equation using Lie symmetry method, 

transforming the second order ODE into a first order one that can subsequently be solved in an easier 

manner. In the subsequent paragraphs, the terminology involved by the use of Lie symmetry method 

requires is presented. 

The point symmetric transformations require that each point (x, y) on a specific curve moves into a 

point (x1, y1). 

 

  x1 = ϕ(x, y, α)       y1 = ψ(x, y, α)                                                     (5) 

 

Where ϕ, ψ  are diffeomorphism (C∞). A transformation that preserves the shape of a given curve 

and it maps this curve on itself, is called symmetry. The transformation (5) that satisfies the group 

properties is called a one-parameter group while α is called the parameter of the group. 

For a one-parameter group an infinitesimal transformation is defined as : 

 

 Uf = ξ(x, y)
∂f

∂x
+ η(x, y)

∂f

∂y
                                                         (6) 

 

Where: 

 

 η(x, y) =
∂ψ

∂α
|

α=0
      ξ(x, y) =

∂ϕ

∂α
|

α=0
          f = f(x, y)                                       (7) 

 

The transformation operator on the function is defined as U. The necessary and sufficient condition 

for a group to be a symmetry transformation for a function f = f(x, y)  is: 

 

 Uf =0                                                                                (8) 

 

The condition (8) is further used to calculate the infinitesimal transformations for the ODE (3). The 

most used procedure in calculating the Lie symmetry is the prolonged vector method [ ].  

Let us consider a second-order ODE given by: 

 

  
d2y

dx2 = ω(x, y,
dy

dx
)                                                                      (9) 

 

If an infinitesimal group is applied as an operator on the equation (9), both functions ξ and η defined 

in (7), must satisfy the following equality [ ]: 
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 ηxx + (2ηxy − ξxx)ý + (ηyy − 2ξxy)ý2 − ξyyý3 + (ηy − 2ξx − 3ξyý)ω =          (10) 

= ωx + ηωy + ((ηx − ξx)ý − ξyý2) ωý 

          

Subsequently, the equality (10) can be decomposed into a system of partial differential equations, and 

ξ and η can be calculated. For our case, taking in consideration that most significant Lie symmetries 

including rotation, translation and scaling could be found from the following equations: 

 

 ξ = C1 + C2x + C3y                 (11) 

η = C4 + C5x + C6y 
 

By substituting the equations (11) in (10) gives: 

 

 αC6ý − 2C2αý − 3C3αý2 + βC6 − 2βC2y − 3βC3yý = βC4 + βC5x + βC6y + 

+αC2 + αC6 − C2αý − C3αý2                                               (12) 

  

Where, α =-2ξωn, β = −ωn
2  

 

The coefficients of  ý2 in left hand and right hand terms must be equal: 

 

 −3C3α = −C3α                                                                          (13) 

 

Therefore: 

 

 C3 = 0                                                                            (14) 

 

Following the same procedure, the coefficients of y  in left hand and right hand terms are equated: 

 

 αC6 − 2αC2 − 3βC2 = αC6 − αC2                                                     (15) 

 

By simplification: 

 

 −αC2 − 3βC2 = 0                                                                       (16) 

 

 C2 = 0                                                                               (17) 

 

The coefficients of x in left hand and right hand terms must also be equal, then: 

 

 C5 = 0                                                                                (18) 

 

Considering the expressions (14), (17) and (18), the equation (12) becomes: 

 

 βC6y = βC4 + βC6y                 (19) 

 

With these considerations: 

 

 C4 = 0                                                                              (20) 

 

From the above calculations, it can be concluded that the equation (3) has the following infinitesimal: 
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 Uf = fx                                                                           (21) 

 

Any pair of functions r(x, y), s(x, y) satisfying the following conditions forms canonical coordinates: 

 

 ξ(x, y)rx + η(x, y)ry = 0 

 ξ(x, y)sx + η(x, y)sy = 1                                                      (22) 

 |
rx ry

sx sy
| ≠ 0 

 

The equation (21) satisfies the conditions (22) and therefore, ξ(x, y) = 1, η(x, y) = 0 . 
The canonical coordinates for a function ),( yxf  can be found from the characteristic equation 

(Changizi, 2011): 

 

 
ds

yx

dy

yx

dx


),(),( 
                                                                                                                       (23) 

 

The solution of the above ODE is r(x, y): 

 

  
dy

dx
=

η(x,y)

ξ(x,y)
                                                                       (24) 

 

and  s(x, y)  will be: 

 

  S(r, x) = (∫
dx

ξ(x,y(r,x))
)|

r=r(x,y)
                                                         (25) 

 

Through adequate selection of variables, the order of the ODE can be reduced. From (23), (24) and 

(25) the canonical coordinates can be calculated as:  

 

 (r, s) = (y, t)                                                                           (26) 

 

 Considering: 

 

  r(y, t) = y                                                                  (27) 

 

The function v  is defined as: 

 

 ν =
1

dy

dt

                                                                                     (28) 

 

The equation can be expressed by contact form (Changizi, 2011) as: 

 

 
dν

dr
= −

d2y

dt2

(
dy

dt
)2

                                                                              (29) 

 

or: 

 

 
d2y

dt2 = −ν−2 dν

dr
                                                                      (30) 
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Using the relations (23), (24), (25) the canonical coordinates and further  𝜈 =
𝑑𝑠

𝑑𝑟
 can be calculated. 

By considering 𝑣 as a new variable and substituting in the ODE, the new generated ODE will have one 

order less than the original one.  

Substituting (28), (29) and (30) in (3) yields: 

 

 −
dν

dr
+ 2ξωnv2 + (ωn

2r −
ε0AV2

2m(g−2r)2) ν3 = 0                                            (31) 

 

The equation (31) is a first order ODE with  ν(0) =
1

v0
 as an initial condition.  

According the recent investigations there is no one-parameter group that satisfies the symmetric 

condition (31). For this reason, no analytical solution for this ODE can be formulated. One can show that 

there is no transformation of scaling or rotation symmetry for (31) (Changizi, 2011). This equation has a 

singularity (where gr  ) and the integration in closed form becomes impossible. Therefore, the 

numerical method approach is used in solving the differential equation. 

 
2. Results 

For both scenarios (one beam and two-beam setups) a numerical analysis is performed. The 

constructive parameters for the polysilicon beams are 200μm length, 20μm with and 2μm thickness with a 

Young modulus of 169 MPa and gap distance is 10μm. For a more detailed insight in the method of 

analysis one can refer to (Changizi, 2011).   

The value of pull-in voltage is calculated by assuming that nonlinear part of the equation (31) to be 

zero, as follows:  

 

 V = √
2my

ε0A
(d − 2y)ωn                                                                                                                  (32) 

 

Pulling voltage determined numerically from the bellow graphs is 129.055 V for a two-beam setup 

and 182.511 V for one beam.  The pull-in value calculated from (32) shows that, for the two-beam setup, 

the error of the exact solution with respect to the numerical solution is 0.104%. For the single beam, using 

almost similar equation the calculated error increases slightly to 0.449 %. The value of the deflection used 

in the equation (32), was calculated through interpolation from figure 1. 

 

 
 

Fig. 2. The variation of the deflection for one beam and two-beam scenarios. 
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Fig. 3. Phase diagram of beams 

 
3. Conclusions 

The dynamic behaviour of a micro-cantilever beam under the influence of electric field, excited by an 

electric potential close to the pull-in voltage was investigated analytically and the results validated 

experimentally with data from the literature. A particular exact solution of the governing equation was 

found using the Lie symmetry method, by reducing the order of the initial ODE. 

The pull-in voltage of one and two-beam setups was determined both analytically and numerically 

and the error between the two methods calculated.  
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