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Abstract- In this paper, we consider the synchronization phenomenon and related cyclic behaviours in Cascade
Boolean networks (CBNs) within different domains of attraction (DAs). The results reveal that CBNs can exhibit
diverse cyclic relations such as partial synchronization, completely synchronization, anti-synchronization, intermittent
synchronization on different combinations of their DAs and initial states.
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1 Introduction
In systems biology, Boolean networks (BNs) is an important model to describe the operation of gene regula-
tory networks (Kauffman 1969). A BN consists of a directed graph with nodes that represent genes or other
elements. Each node assumes only two states: ”on” or ”off”, referring occurrence of a gene transcription
or not. In a BN, every node gets input from its neighbouring nodes and updates its state simultaneously
according to their interaction described by Boolean functions. Despite its simplicity, BN has found many
applications in biological and engineering problems, such as (Stillman et al. 1996), (Romond et al. 1999)
and (Heidel et al. 2003).

An interesting issue in study of BNs addresses the synchronization of coupled BNs due to its potential
applications. For instance, in the cortical networks in a brain, synchronization among related parts is required
to make the entire system capable of performing certain functions (Zhou et al. 2007), (Garcia-Ojalvo et al.
2004). Existing works on synchronization of BNs, e.g., (Morelli et al. 1998), (Morelli et al. 2001), (Ho et al.
2001), (Hung et al. 2006), and (Hung 2011), mostly consider random systems and are based on numerical
simulation. Recently, Hong and Xu in (Hong et al. 2010), (Xu et al. 2013), and Li in (Li et al. 2012a)
presented analytical results for synchronization of deterministic BNs, using the recently developed theory of
semi-tensor product (STP) of matrices by Cheng and Qi in (Cheng et al. 2010, 2011a). This approach allows
for converting a logical function into its equivalent algebraic form and hence facilitating analysis of BNs by
means of the conventional control system theory. In this setting, many results have been obtained for the
synchronization of BNs connected in ”drive-response” configuration, (Li et al. 2012b), (Li et al. 2012c), (Li
et al. 2013).

In this paper, we consider general synchronization of CBNs within specified DAs. Our discussion is
based on algebraic representations of BNs and gives rigorous analysis of the system dynamics. We give
synchronization criterion and show that CBNs can exhibit richful cyclic behaviours depending on different
combination of DAs of the system.

This paper is organized as follows. Section 2 gives brief review of theory of STP and Section 3 presents
the CBNs model. In Section 4, we establish a synchronization criterion, and In Section 5 we discuss the
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cyclic behaviours of CBNs. A brief conclusion is drawn in Section 6.

2 Preliminaries
In this section, we briefly introduce the STP theory and useful properties (Cheng et al. 2010).

Let A an n×m matrix and B a p×q matrix, the semi-product of A and B is defined as

AnB = (A⊗ Il/m)(B⊗ Il/p),

where ⊗ is the Kronecker product and l = lcm(m, p) is the least common multiple of m and p. Clearly, it is
reduced to the conventional matrix product when m = p. We have the following properties of STP:

1. If x, y are column vectors, then xn y = x⊗ y.

2. If A is a matrix, x is an n dimensional column vector, then xnA = (In⊗A)n x.

3. If x is an n dimensional column vector, y is an m dimensional column vector, then ynx =Wn,mnxny.

4. If x ∈ ∆n, then xn x = Φnx.

We can have a matrix expression for a logic variable by using STP technique. To see this, we assign logical
value with a vector by letting T = 1 ∼ δ 1

2 and F = 0 ∼ δ 2
2 , where δ 1

2 = [1 0]T and δ 2
2 = [0 1]T . Then a

logical variable A(t) can assume vector values as below:

A(t) ∈ D := ∆2 = {δ 1
2 ,δ

2
2 }.

Any logical function L(A1, . . . ,An) with logical arguments A1, . . . ,An can be expressed in a multi-linear form
as

L(A1, . . . ,An) = MLA1A2 · · ·An,

where ML ∈ L2×2n is uniquely determined by L(A1, . . . ,An) and referred to as the structure matrix of L, see
(Cheng et al. 2010).

3 Model
The CBNs we considered can be expressed as

u1(t +1) = g1(u1(t), . . . ,un(t))
...

...
un(t +1) = gn(u1(t), . . . ,un(t))

(1)


x1(t +1) = f1(x1(t), . . . ,xn(t),u1(t), . . . ,um(t))

...
...

xn(t +1) = fn(x1(t), . . . ,xn(t),u1(t), . . . ,um(t))

(2)

where, u j ∈ D, j = 1,2, . . . ,m and xi ∈ D, i = 1,2, . . . ,n represent node state variables of BNs (1) and (2),
respectively; g j, fi are Boolean functions, g j : Dm −→ D, j = 1,2, . . . ,m; fi : Dn+m −→ D, i = 1,2, . . . ,n;
t ∈ N = {1,2, . . .}.

By invoking the STP technique, we can convert (1) and (2) into the following algebraic form{
u(t +1) = Gu(t),u ∈ Dm

x(t +1) = Lu(t)x(t),x ∈ Dn (3)
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where,
u(t) = u1(t) · · ·um(t) ∈ ∆2m ,
x(t) = x1(t) · · ·xn(t) ∈ ∆2n .

G ∈ L2m×2m , L ∈ L2m×2n+m . Lu(t) is the input-determined transition matrix (Cheng et al. 2010a). For
simplicity, we assume that the BN (1) has the same number of nodes as BN (2) does, i.e., m = n. Let u(t,u0)
be the solution of (1) with the initial value u0 ∈ (∆2)

n, and x(t,x0,u0) the corresponding solution of (2) with
the initial value x0 ∈ (∆2)

n. Notice that the solution of (2) is determined by both the initial values x0 and u0.
Therefore, different combinations of the DA of BNs (1) and (2) in which the initial states are chosen may
give rise different dynamic behaviour in the coupled systems, thus resulting in diverse dynamic behaviours.
The primary objective of this paper is to analyse and classify such kind of diverse dynamics patterns with
respect to the DAs of the coupled systems.

Assume that BN (1) has p distinct DAs, S1, . . . ,Sp, p ∈ N and for a fixed DA Si, 1≤ i≤ p, BN (2) has qi

corresponding input-determined DAs, Si1, . . . ,Siqi . Because of the finite state spaces of BNs, such DAs exist
and can be calculated readily (Cheng et al. 2010).

Let Si be a DA of BN (1), Si j be a related input-determined DA of BN (2), 1≤ j≤ qi. If there is a positive
integer k, such that for any u0 ∈ Si and x0 ∈ Si j,

x(t,x0,u0) = u(t,u0), t ≥ k,

then we call that the synchronisation of BNs (1) and (2) with respect to the given DAs occurs.

4 Main result
To establish our main result, we make use of block-diagonal form of BNs. By (Fornasini et al. 2013), there
is a state transformation

ũ(t) = Pu(t),

such that the system (1) can be changed into the form

ũ(t +1) = G̃ũ(t).

where the new state transition matrix G̃ is a block-diagonal matrix,

G̃ = PGP−1

= blockdiag[D1,D2, . . . ,Dp]

=


D1

D1
. . .

Dp

 ,
with

Di =

[
Ni 0
Ti Ci

]
∈Lni×ni , i = 1,2, . . . , p. (4)

The matrix P corresponds to a so-called change of basis in the vector space of the logic functions of u1, . . . ,un

(Cheng et al. 2011a).
From (Fornasini et al. 2013), the Block matrices D1, . . . ,Dp describes p DAs, S1, . . . ,Sp of BN (1)

along with the dynamical properties, including attractors or cycles. Ci ∈ Lki×ki is the permutation matrix
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of i-th domain and its dimension represents the cycle length ki. Ni ∈L(ni−ki)×(ni−ki) is a nilpotent matrix.
Tp := maxi∈[1,r](ni− ki) represents the maximum time length of transition process of BN (1), namely, after
Tp steps, every trajectory will enter some limit cycle Ci. For details, please refer to (Fornasini et al. 2013).

Further, we set
y(t) = y1(t) · · ·yn(t)yn+1(t) · · ·y2n(t),

where
yi(t) = ui(t), i = 1,2, . . . ,n,

yn+ j(t) = x j(t), j = 1,2, . . . ,n.

Then multiplying both sides of equation (3), we have

u(t +1)x(t +1) = Gu(t)Lu(t)x(t)

i.e.,

y(t +1) = G(I2m⊗L)u2(t)x(t)

= G(I2m⊗L)Φmu(t)x(t)

= G(I2m⊗L)Φmy(t).

Let
L1 = G(I2m⊗L)Φm,

we get
y(t +1) = L1y(t).

Similarly, we can change BN (3) into a block-diagonal form by using a state transformation

ỹ(t) = P1y(t),

and get
ỹ(t +1) = L̃1ỹ(t).

where,

L̃1 = P1L1P−1
1

= blockdiag[D1,D2, . . . ,Dp′ ]

=


D1

D2
. . .

Dp′

 ,
with

Di =

[
Ni 0
Ti Ci

]
∈Lni×ni , i = 1,2, . . . , p′. (5)

Similarly, the block matrices D1, . . . ,Dp′ describe p′ DAs of BN (3) along with the dynamical properties
including attractors and cycles. Ci ∈Lki×ki is the permutation matrix of ith domain. Its dimension represents
the cycle length; Ni ∈L(ni−ki)×(ni−ki) is a nilpotent matrix. Tp′ := maxi∈[1,l1](ni−ki) represents the maximum
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time length of transition process of BN (3), namely, after Tp′ steps, every trajectory of BN (3) will enter some
limit cycle Ci.

For unidirectional connectivity of BN (1) and BN (3) (Cheng et al. 2009), we have the following corre-
spondence between block matrices of BNs (1) and (3).

Di −→ {D}i,

where, {D}i = {Di1,Di2, . . . ,Diqi}i is obtained by dividing D1, . . . ,Dp′ of L̃1 into i non-overlapping groups,
Di and {D}i are of one-to-one correspondence. Assume the number of blocks to be {D}i as qi. We give the
following algorithm to determine the correspondence between Di and {D}i.

For any Di ∈ L̃1, i = 1,2, . . . , p′, we can take any column vector δi in the position of Di and revert it to its
original coordinate

δi0 = P−1
1 δi.

Obviously, δi0 can be separated as a STP product of two vectors of δu0 and δx0, which represents the state of
BNs (1) and (2), respectively.

δi0 = δu0 nδx0.

By changing δu0 to δu under new coordinate system, we have

δu = Pδu0.

If the column vector of G̃nδu is located in the position of Di, then the related block of Di is Di.
Note that by reverting Ci and Ci j to their original coordinates, we have

P−1

 0
C1
0

=
[
δcu1δcu2 · · ·δcuk

]
,

P−1
1

 0
C̃1
0

=
[
δcy1δcy2 · · ·δcyk1

]
.

Now, we are ready to present the following main result. Let Di be a block in BN (1) and {D}i =
{Di1, ...,Diqi}i the corresponding block group in BN (3). If there exists a Di j ∈ {D}i, such that Dim(Ci) =
Dim(Ci) and

δcyi = δ
2
cui

; i = 1,2, . . . ,k.

Then complete synchronization between BNs (1) and (2) occurs with respect to the DAs specified by Di and
Di j. Proof: We prove that Si j and Di j in block group {D}i have one-to-one correspondence. That is, Syi j of
BN (3), Syi j = Si×Si j, is a domain of BN (3).

We first prove Syi j has only one attractor Cy1 by contradiction. Suppose that Syi j has two attractors Cy1
and Cy2 with cycle lengths ky1, ky2, respectively:

Cy1 = {p1, p2, . . . , pky1}, Cy2 = {q1,q2, . . . ,qky2}.

We have
pm = umxm, m = 1,2, . . . ,ky1, qn = unxn, n = 1,2, . . . ,ky2.

Assume the cycle lengths in Si and Si j are ku and kx, respectively. Obviously, ky1 and ky2 are both the L.C.M.
of ku and kx. Therefore, if ky1 6= ky2, then ky1/ku 6= ky2/ku, kx 6= kx, a contradiction occurs; if ky1 = ky2, then
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ky1/ku = ky2/ku, Si j has two different attractors with equal length Cxi1 6= Cxi2, contradicting to that Si j has
only one attractor. Therefore, Syi j has only one attractor.

Next, we prove there is no other state outside Si×Si j that converges to Cy by contradiction, assume that
there exists a vector δ0 6∈ Syi j and T0 ∈ N, such that y(T0,δ0) = Cy for t > T0. We take δ0 = u0x0. Since
δ0 6∈ Syi j , we have u0 6∈ Si or x0 6∈ Si j. Suppose the first case holds, and then

u(t,u0) =Ci 6=Ci,

where, Ci is the attractor in Si. Therefore,

Cy =CiCi j 6=CiCi j.

This contradict to that a DA only has one attractor. Hence, there is no trajectory starting from outside of Syi j

converging to Cy. This proves that the input-determined DA in BN (2) has one-to-one correspondence with
Di j in {D}i. Thus, we have Syi j = Si×Si j.

Finally, we prove synchronization between BNs (1) and (2) occurs within the specified DAs. Since for
any u(0) ∈ Si and x(0) ∈ Si j, y(0) = u(0)x(0). So Col(P1y0) ∈ Col(Di j). There exists a transition time
T (u(0),x(0))> 0, such that for t > T (u(0),x(0)), the state vector of ỹ takes values out of the column vectors
in the position of permutation matrix Ci j. Therefore,

δcyi = δ
2
cui
, i = 1,2, . . . ,k.

That is,
δcui = δcxi , i = 1,2, . . . ,k.

It means that once BNs (1) and (2) run into the cycles in Di and Di j, respectively, complete synchronization
will take place within the specific DAs. Because the combinations of u(0) and x(0) are finite, we can always
find such a Tp large enough for all combinations.

5 Cyclic patterns
Obviously, complete synchronization considered above is only one type of cyclic patterns between BNs (1)
and (2) in CBNs. We can also consider other types. General cyclic pattern, in which we neither consider
cycle length nor the node state correspondence between BNs (1) and (2). Rolling-Gear, a special type in
general cyclic pattern, in which we consider only on cycle length relationship between (1) and (2). Rolling-
Gear allows for a tiny cycle in a small BN to drive a large cycle in a BN of large-scale, which may reveal
hidden order in life (Cheng et al. 2011a). General synchronization, a special type in Rolling-Gear, in which
cycle length between BNs (1) and (2) is equal and node states have some special correspondence, such as
complete synchronization, partial synchronization, anti-complete synchronization, synchronization on cycle
length, etc. Similarly, for general synchronization, we can also establish corresponding criteria.

Observe that the discussion in last section relies on a particular combination of DAs in BNs (1) and (2).
we can further extend our discussion to all possible combinations. Because the cyclic patterns in different
combinations of DAs are independent, comparing to combination of Si and Si j, different type of cyclic pattern
may occur within different combination of Si1 and Si1 j1 , i 6= i1, j 6= j1; or even within Si and Si j1 . The initial
states, u(t0) and x(t0), will jointly decide the type of cyclic pattern in the CBNs.

Next, we point out that u(t0) and x(t0) can have different effects on the occurrence of complete synchro-
nization when it takes place within different combinations of DAs. Let Di, i = 1, . . . , p, be a block in (4) and
{D}i = {Di1, ...,Diqi}i the corresponding block group in (5). We have the following results.

Corollary 1
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1.1 If qi = 1, i = 1, . . . , p, and there exists i1 6= i2, such that complete synchronization of BNs (1) and (2)
occurs within Di11 but does not within Di21, then complete synchronization depends only on u(t0) but not on
x(t0).

1.2 If qi > 1, i = 1, . . . , p, and there exists i1 6= i2, j1 6= j2, j1, j2 = 1, . . . ,qi, such that complete syn-
chronization of BNs (1) and (2) occurs within Di1 j1 but does not within Di2 j2 , then complete synchronization
depends not only on u(t0) but also on x(t0).

1.3 If qi > 1 , i = 1, . . . , p, and there exists j1 6= j2, j1, j2 = 1, . . . ,qi, for each i = 1, . . . , p, such that
complete synchronization of BNs (1) and (2) occurs within Di j1 but does not within Di j2 , then complete
synchronization depends only on x(t0) but not on u(t0).

1.4 If for i, i = 1, . . . , p; j, j = 1, . . . ,qi, such that complete synchronization of BNs (1) and (2) occurs
within all Di j, then complete synchronization depends neither on x(t0) nor on u(t0).

The proof of above results is obvious. Particularly, for synchronization described in Corollary 1.4, we
call it globally consistently complete synchronization, which means complete synchronization takes place
for all combinations of DAs in CBNs.

6 Conclusion
We have studied synchronization of CBNs and established a algebraic criterion by using STP method. Based
on this, we also considered the cyclic patterns in CBNs and found that the coupled system may exhibit
various cyclic behaviours, depending on possible combinations of DAs of the BNs comprising the whole
system.
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