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Abstract- This paper presents a structured perturbation analysis of the symmetric algebraic Riccati equations by ex-
ploiting the symmetry structure. Based on the analysis, structured normwise, componentwise, and mixed condition
numbers are defined and their explicit expressions are derived. Due to the exploitation of the symmetry structure,
our results are improvements of previous work on the perturbation analysis and condition numbers of the symmetric
algebraic Riccati equations. Our preliminary numerical experiments demonstrate that our condition numbers provide
accurate estimates for the errors in the solution caused by the perturbations on the data.
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1 Introduction
Algebraic Riccati equations arise in optimal control problems in continuous-time or discrete-time. The
theory, applications, and numerical methods for solving the equations can be found in (Anderson et al., 1979
Lancaster et al., 1995) and references therein. The continuous-time algebraic Riccati equation (CARE) is
given in the form:

Q+AHX +XA−XBR−1BHX = 0, (1)

where X is the unknown matrix, A∈n×n, B∈n×m and Q, R are n×n Hermitian matrices with Q being positive
semi-definite (p.s.d.) and R being positive definite. The discrete-time algebraic Riccati equation (DARE) is
given in the form:

Y −AHYA+AHY B(R+BHY B)−1BHYA−CHC = 0, (2)

where Y is the unknown matrix, A ∈n×n, B ∈n×m, C ∈r×n, and R ∈m×m with R being Hermitian and positive
definite.

For the complex CARE (1), let G = BR−1BH , a Hermitian and p.s.d. matrix, then we obtain its simplified
form

Q+AHX +XA−XGX = 0. (3)
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For the complex DARE (2), let Q = CHC and G = BR−1BH , both Hermitian and p.s.d., then we obtain its
simplified form

Y −AHY (I +GY )−1A−Q = 0. (4)

The existence and uniqueness of the solution is essential for perturbation analysis. It is known that if
(A,G) in the CARE (3) is a c-stabilizable pair and (A,Q) is a c-detectable pair, then there exists a unique
Hermitian and p.s.d. solution X for the CARE. Similarly, if (A,B) in the DARE (2) is a d-stabilizable pair
and (A,C) is a d-detectable pair, then there exists a unique Hermitian and p.s.d. solution Y for the DARE (4)
(Anderson et al., 1979). In this paper, we assume that for the CARE or DARE the conditions are satisfied,
thus the solution exists and is unique.

Perturbation analysis concerns the sensitivity of the solution to the perturbations in the data of a problem.
A condition number is a measurement of the sensitivity. Combining with the backward error analysis, it can
be used to estimate the error in a computed solution. In this paper, we consider structured perturbation.
Specifically, because Q, G in (3) and (4) are Hermitian, it is reasonable to require the perturbation matrices
on Q and G be Hermitian. Sun (Sun et al., 2002) defined the structured normwise condition numbers for
the CARE and DARE and showed that the expressions of structured normwise condition numbers are the
same as their unstructured counterparts for both real and complex cases. Later, Zhou etc. (Zhou et al., 2009)
performed componentwise perturbation analyses of the real CARE and real DARE and obtained the exact
expressions for mixed and componentwise condition numbers defined in (Gohberg et al., 1993). However,
in their paper, the perturbation matrices on Q and G are general (unstructured). In this paper, we perform
structured perturbation analyses and define the structured normwise, mixed and componentwise condition
numbers for the complex CARE and DARE and derive their expressions using the Kronecker product.

Throughout this paper we adopt the following notations:

• m×n (m×n) denotes the set of complex (real) m× n matrices; n×n the set of n× n Hermitian matrices;
n×n the set of n×n real symmetric matrices; n×n the set of n×n real skew-symmetric matrices.

• AT denotes the transpose of A; AH the complex conjugate and transpose of A; I the identity matrix; 0
the zero matrix; ℜ(A) (ℑ(A)) the real (imaginary) part of a complex matrix A.

• The mapping (·): n×n→n(n+1)/2 maps a symmetric matrix A = [ai j] ∈n×n to a (n(n+1)/2)-vector:

[a11, ...,a1n,a22, ...,a2n, ...,an−1,n−1,an−1,n,ann]
T .

• The mapping (·): n×n →n(n−1)/2 maps a skew-symmetric matrix A = [ai j] ∈n×n to the (n(n− 1)/2)-
vector:

[a12, ...,a1n,a23, ...,a2n, ...,an−2,n−1,an−2,nan−1,n]
T .

• A� 0 (A� 0) means that A is positive definite (positive semi-definite).

• ‖ ‖F ,‖ ‖2 and ‖ ‖∞ are the Frobenius norm, the spectral norm and the infinity norm respectively. For
A ∈m×n, ‖A‖max = maxi j |ai j|.

• A⊗B = [ai jB] is the Kronecker product of matrices A = [ai j] and B; (A) is the vector defined by
(A) = [aT

1 , ...,a
T
n ]

T ∈mn, where a j is the jth column of A; Π is an n2×n2 permutation matrix, such that,
for an n×n real matrix A, (AT ) = Π(A).

• |A| ≤ |B| means |ai j| ≤ |bi j| for A, B ∈m×n; A./B is the componentwise division of matrices A and B
of the same dimensions, where if bi j = 0 we assume ai j = 0 and define ai, j/bi, j = 0.
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The rest of the paper is organized as follows. In Section 2, we present our structured perturbation
analyses and the definitions and expressions of the structured normwise condition numbers of the CARE and
the DARE. The definitions and expressions of the structured mixed and componentwise condition numbers
are given in Section 3. Our preliminary numerical experiment results are demonstrated in Section 4. Finally,
Section 5 concludes this paper.

2 Structured normwise condition numbers
In this section, using the Kronecker product, we first present a structured perturbation analysis of the CARE
(3) and derive an expression of the corresponding structured normwise condition number. Then, analogously,
we give a structured perturbation analysis of the DARE (4) and the corresponding structured normwise
condition number.

2.1 CARE
Let ∆A ∈n×n, ∆Q ∈n×n, and ∆G ∈n×n be the perturbations to the data A, Q, and G respectively. From (Sun
1998), for Q, G� 0 and sufficiently small ‖[∆A,∆Q,∆G]‖F , there exists a unique Hermitian and p.s.d. matrix
X̃ such satisfying the perturbed equation:

X̃G̃X̃− X̃ Ã− ÃH X̃− Q̃ = 0, (5)

where Ã = A+∆A, G̃ = G+∆G, and Q̃ = Q+∆Q. Let ∆X = X̃ −X be the change in the solution due
to the perturbation, then for small ‖[∆A,∆Q,∆G]‖F , the first order approximation of (5) is the continuous
Lyapunov equation:

(A−GX)H
∆X +∆X(A−GX) =−∆Q−X∆A−∆AHX +X∆GX ,

where ∆X is the unknown matrix. Applying the operator to the above equation and using the identity
(UVW ) = (W T ⊗U)(V ), we obtain

(∆X) =−Z−1[−(XT ⊗X)(∆G)+(In⊗X)(∆A)+(XT ⊗ In)(∆AH)+(∆Q)], (6)

where
Z = In⊗ (A−GX)H +(A−GX)T ⊗ In. (7)

To exploit the symmetry structure of the perturbation matrices ∆G and ∆Q, we define an n2-by-n(n+ 1)/2
matrix S1 such that S1 (ℜ(∆G)) = (ℜ(∆G)). Basically, S1 expands the n(n+1)/2-vector (ℜ(∆G)) to the
n2-vector (ℜ(∆G)) by copying its entries. Similarly, we define an n2-by-n(n− 1)/2 matrix S2 such that
S2 (ℑ(∆G)) = (ℑ(∆G)). Then (6) becomes

(∆X) = −Z−1[In⊗X +(XT ⊗ In)Π, (In⊗X− (XT ⊗ In)Π),

−(XT ⊗X)S1, −(XT ⊗X)S2, S1, S2] ·∆,

recalling that Π is the permutation matrix such that Π(ℜ(∆A)) = (ℜ(∆AH)) and

∆ = [(ℜ(∆A))T , (ℑ(∆A))T , (ℜ(∆G))T , (ℑ(∆G))T ,

(ℜ(∆Q))T , (ℑ(∆Q))T ]T (8)

is the augmented structured perturbation vector. Denoting M = [MA MG MQ], where

MA = [In⊗X +(XT ⊗ In)Π, (In⊗X− (XT ⊗ In)Π)]
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corresponds to [(ℜ(∆A))T , (ℑ(∆A))T ]T ,

MG = [−(XT ⊗X)1, −(XT ⊗X)2]

corresponds to [(ℜ(∆G))T , (ℑ(∆G))T ]T , and

MQ = [1, 2]

corresponds to [(ℜ(∆Q))T , (ℑ(∆Q))T ]T , we get

(∆X) =−Z−1M ∆. (9)

Now, following the condition number theory [?], we define the structured normwise condition numbers:

κn = lim
ε→0

sup
η≤ε

∆A∈n×n, ∆G,∆Q∈n×n

G+∆G,Q+∆Q�0

‖∆X‖F

ε‖X‖F
, (10)

where

η =

∥∥∥∥[‖ℜ(∆A)‖F

δ1
,
‖ℑ(∆A)‖F

δ2
,
‖(ℜ(∆G))‖2

δ3
,
‖(ℑ(∆G))‖2

δ4
,

‖(ℜ(∆Q))‖2

δ5
,
‖(ℑ(∆Q))‖2

δ6

]∥∥∥∥
2

is a scaled augmented structured perturbation vector and the scaling factors δi > 0, i = 1, ...,6, are generally
chosen to be the functions of ‖ℜ(A)‖F , ‖ℑ(A)‖F , ‖(ℜ(G))‖2, ‖(ℑ(G))‖2, ‖(ℜ(Q))‖2, and ‖(ℑ(Q))‖2.
Here, we choose δ1 = ‖ℜ(A)‖F , δ2 = ‖ℑ(A)‖F , δ3 = ‖(ℜ(G))‖2, δ4 = ‖(ℑ(G))‖2, δ5 = ‖(ℜ(Q))‖2 and
δ6 = ‖(ℑ(Q))‖2.

The following theorem gives an explicit expression of the structured normwise condition number of the
CARE.

Using the above notations, an expression of the normwise condition number of the complex CARE is

κn =
‖Z−1D‖2

‖X‖F
, (11)

where
D =

(
[δ1In2 , δ2In2 , δ3In(n+1)/2, δ4In(n−1)/2, δ5In(n+1)/2, δ6In(n−1)/2]

)
(12)

is a diagonal scaling matrix.
Proof. From (9), we have

(∆X) =−Z−1DD−1
∆.

Then, from the definition (10), we have

κn = lim
ε→0

sup
η≤ε

‖Z−1M DD−1∆‖2

ε‖X‖F
= lim

ε→0
sup

‖ε−1D−1∆‖2≤1

‖−Z−1M D(ε−1D−1∆)‖2)

‖X‖F
,

noting that ‖D−1∆‖2 = η . The upper bound (11) can be attained, because ∆ can vary freely.
Different from the perturbation analysis in (Sun et al., 2002), in our analysis, we treat the perturbations

on the real and imaginary parts of a complex matrix separately. It is more practical, since in computation,
the real and imaginary parts are stored and computed separately. It can be shown that our condition number
κn is smaller than its counterpart in (Sun et al., 2002).
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2.2 DARE
Following the perturbation analysis of the CARE, for the DARE (4), we define N = [NA NG NQ], where

NA = [In⊗ (AHYW )+((YWA)T ⊗ In)Π, (In⊗ (AHYW )− ((YWA)T ⊗ In)Π)],

MG = [−((YWA)T ⊗ (AHYW )1, −((YWA)T ⊗ (AHYW ))2],

MQ = [1, 2],

then
(∆Y ) =−T−1N ∆,

where ∆ is defined in (8) and
T = In− (ATW T )⊗ (AHW H). (13)

Replacing ∆X and X in (10) with ∆Y and Y respectively, we can define the structured normwise condition
number for the DARE. An expression of the condition number similar to (11) can be obtained. Also, it can
be shown that our condition number is an improvement of its counterpart in (Sun et al., 2002).

3 Structured mixed and componentwise condition numbers
Componentwise analysis (Cucker et al., 2007, Higham 2002, Rohn 1989) is more informative than its
normwise counterpart when the data are imbalanced or sparse. Here, we consider the two kinds of condition
numbers introduced by Gohberg and Koltracht (Gohberg et al., 1993). The first kind, called the mixed
condition number, measures the output errors in norm while the input perturbations componentwise. The
second kind, called the componentwise condition number, which measures both the output error and the
input perturbations componentwise.

Following (Gohberg et al., 1993), we define the structured mixed and componentwise condition numbers
for the CARE (3):

κm = lim
ε→0

sup
|∆|./|c|≤ε

∆A∈n×n, ∆G,∆Q∈n×n

G+∆G,Q+∆Q�0

‖∆X‖max

ε‖X‖max
,

κc = lim
ε→0

sup
|∆|./|c|≤ε

∆A∈n×n, ∆G,∆Q∈n×n

G+∆G,Q+∆Q�0

ε
−1‖∆X ./X‖max,

where ∆ is the augmented structured perturbation vector defined in (8) and

c = [(ℜ(A))T , (ℑ(A))T , (ℜ(G))T , (ℑ(G))T ,

(ℜ(Q))T , (ℑ(Q))T ]T (14)

is the augmented structured data vector. Thus |∆|./|c| ≤ ε means that the relative perturbation is componen-
twise less than or equal to ε .

The following theorem presents the structured mixed and componentwise condition numbers of the
CARE.

For the structured mixed and componentwise condition numbers of the complex CARE (3), we have

κm =

∥∥|Z−1M | |C|
∥∥

∞

‖X‖max
, (15)
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and
κc =

∥∥diag((X))† (|Z−1M | |C|
)∥∥

∞
, (16)

where diag((X))† is the Moore-Penrose inverse of diag((X)).
Proof. From (9), we have

‖∆X‖max = ‖(∆X)‖∞ = ‖Z−1M ∆‖∞ ≤ ‖Z−1M Dc‖∞‖D†
c∆‖∞,

where D†
c is the Moore-Penrose inverse of Dc = diag(c). Note that |∆|./|c| ≤ ε implies ‖D†

c∆‖∞ ≤ ε . Let e
be the vector consisting all 1’s, then∥∥Z−1M Dc

∥∥
∞
=
∥∥|Z−1M | |Dc|e

∥∥
∞
=
∥∥|Z−1M | |c|

∥∥
∞
,

leading to the expression (15) of κm. The expression (16) of the componentwise condition number κc can be
obtained similarly.

Analogously, we can define the mixed and componentwise condition numbers for the DARE and derive
their expressions.

4 Numerical examples
In this section, we adopt the examples in (Sun et al., 2002) to illustrate the effectiveness of our methods. All
the experiments were performed using MATLAB 7.0.

Given A∈n×n and G, Q∈n×n, we generated the perturbations on A, G and Q as follows: ∆A = ε(M1�A),
∆G = ε(M2 �G), and ∆Q = ε(M3 �Q), where ε = 10− j, � denotes the componentwise matrix multiplica-
tion, and M1 ∈n×n, and M2,M3 ∈n×n are matrices whose entries are random variables uniformly distributed
in the open interval (−1,1).
Example 1. Consider the CARE (3), where

A = diag([−0.1,−0.02]), Q =CTC, G = BR−1B,

where

B =

[
0.1 0

0.001 0.01

]
, R =

[
1.001 1

1 1

]
, C = [10,100].

The pair (A,G) is c-stabilizable and the pair (A,Q) is c-detectable. Thus there exists a unique symmetric and
p.s.d. solution X

Let Q̃ = Q+∆Q, Ã = A+∆A, G̃ = G+∆G be the coefficient matrices of the perturbed CARE (5).
We used the MATLAB function are to compute the solution X to (3) and the solution X̃ to (5). Thus
‖∆X‖F/‖X‖F , where ∆X = X̃ −X , gives the relative change in the solution due to the perturbation. From
the definitions (8) of ∆ and (14) of c, ‖∆‖2/‖c‖2 gives the size of relative perturbation on the data A, G, and
Q. In our experiments, we set j =−12, that is, ε = 10−12. The following table compares the estimates using
our condition numbers with the change in the solution computed by MATLAB.

‖∆X‖F/‖X‖F κn‖∆‖2/‖c‖2 κc‖∆‖2/‖c‖2

4.1375×10−10 8.3197×10−8 3.0826×10−9

Example 2. Consider the DARE (4), where

A = Bdiag([0,0.001,1.0])B, Q = Bdiag([1000,1.0,0.001])B,
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and
G = Bdiag([0.001,0.001,0.001])B,

where

B = I3−
2
3
[1,1,1]

 1
1
1


is a Householder matrix. The pair (A,B) is d-stabilizable and the pair (A,Q) is d-detectable. Thus there
exists a unique symmetric and p.s.d. solution Y

Similar to Example 1, let Q̃ = Q+∆Q, Ã = A+∆A, G̃ = G+∆G be the coefficient matrices of the
perturbed DARE. We used the MATLAB function dre to compute the solution Y to (4) and the solution Ỹ
to the perturbed equation. Thus ‖∆Y‖F/‖Y‖F , where ∆Y = Ỹ −Y , gives the relative change in the solution
due to the perturbation. From the definitions (8) of ∆ and (14) of c, ‖∆‖2/‖c‖2 gives the size of relative
perturbation on the data A, G, and Q. In our experiments, we set j =−12, that is, ε = 10−12. The following
table compares the estimates using our condition numbers with the change in the solution computed by
MATLAB.

‖∆Y‖F/‖Y‖F κn‖∆‖2/‖c‖2 κc‖∆‖2/‖c‖2

1.3307×10−10 5.5545×10−10 2.6434×10−9

As shown above, our condition number estimates are accurate.

5 Conclusion
In this paper, by exploiting the symmetry structure, we present structured perturbation analyses of both the
continuous-time and the discrete-time symmetric algebraic Riccati equations. From the analyses, we define
the structured normwise, mixed and componentwise condition numbers and derive their explicit expressions.
Our condition numbers are improvements of the results in previous work (Sun et al., 2002 Zhou et al., 2009).
Our preliminary experiments show that the three kinds of condition numbers, especially the componentwise
condition number, provide accurate estimate for the change in the solution for the perturbed equation. The
expressions (11), (15), and (16) show that the condition number for Z (7) can be used as an indicator for the
condition of solving the CARE. Similarly, the condition number of T (13) can be used as an indicator for the
condition of solving the DARE.
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