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Abstract - In this paper, a model-free sliding mode controller is developed and demonstrated on a second order nonlinear system. The 

proposed controller is based solely on state measurements and previous control inputs, thus, a system model is not required. The 

underlying knowledge required about the system is its order and the bounds of the input matrix, if it is non-unitary. In order to handle 

system uncertainties, a discontinuous term is added to the controller form and is designed using Lyapunov’s stability theorem to 

guarantee asymptotically stability during the reaching phase of the state trajectories. The discontinuous term creates an undesirable 

effect i.e., chattering, which is impractical for implementation of the controller in actual system types. A time-varying smoothing 

boundary layer is used to eliminate chattering and is also developed in this work. Finally, the controller is tested using a nonlinear 

second order system with and without including sensor measurement noise effects simulating real-world effects. 
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1. Introduction 
 Sliding mode control is a popular robust control scheme for nonlinear systems since it is very effective in handling 

system uncertainties and disturbances. This technique is based on applying a discontinuous control input which drives the 

system’s states onto a desired sliding surface in the state phase domain. However, an undesirable effect is produced with 

the nominal form of the controller, i.e., control effort chattering, which can be compensated by applying a smooth 

boundary layer into the controller form while still achieving tracking stability in the Lyapunov sense. 

Due its popularity, many sliding mode control schemes have been previously developed. Laghrouche et al. [3] proposed a 

higher-order sliding mode control law based on optimal linear quadratic control to handle minimum-phase nonlinear 

models. Seung-Hi et al. [5] presented a discrete-time sliding mode control using fast output sampling which made it 

possible to arbitrarily assign the system closed loop eigenvalues. Hay et al. [4] submitted a method called adaptive seeking 

sliding mode control. This method applies a floating gain to relieve the chattering problem, and the unknown uncertainties 

and disturbances were adaptively estimated and compensated by the updated sliding control method. Cunha et al. [2] 

proposed an output-feedback model reference sliding mode control to solve the output tracking problem. The strategy of 

this method is based on an output-feedback unit vector controller to generate the sliding mode. Lastly, Crassidis and Mizov 

[1] developed a model-free sliding mode controller, which only relies on state and control input measurements. 

 The work developed in this paper is similar to the one developed in [1]. The system approach is considerably 

different though, which results in the development of an alternative and new type of model-free sliding mode control 

scheme. The proposed sliding mode controller also relies only on state and control input measurements. If there is an input 

matrix, the bounds of it are required to be known to derive the control law. The controller can be directly applied to linear 

and nonlinear SISO systems. The outline of this paper is as follows. Section 2 describes the system and the sliding surface. 

In Section 3, the control law and the switching gain are derived. Section 4 contains two illustrative examples implementing 

this controller, one without the effect of measurement noise and the other one with measurement noise. 

 

2. System Description 
 Consider a 𝑛𝑡ℎ- order single-input-single-output autonomous system, where 𝑛 is the order of the system. The 

following equality holds true for the system: 

 

𝑥𝑛 =  𝑥𝑛 + 𝑏𝑢 − 𝑏𝑢𝑘−1 − 𝑏𝑢 + 𝑏𝑢𝑘−1 (1) 
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 where 𝑥 is the state vector, 𝑢 is the control input, 𝑢𝑘−1 is the previous control input and 𝑏 is the input matrix. The 

error parameter between the input and the previous input is defined as: 

 

𝜀(𝑢) = −𝑢 + 𝑢𝑘−1 (2) 

 

 Substituting the Eq. (2) described above into Eq. (1), the following is obtained: 

 

𝑥𝑛 =  𝑥𝑛 + 𝑏𝑢 − 𝑏𝑢𝑘−1 + 𝑏𝜀(𝑢) (3) 

 

 In order to compute the control law, and to avoid an algebraic loop within the controller algorithm, an estimation of 

the control input error is necessary. Thus, the estimation of the control input error is defined as: 

 

𝜀̂(𝑢) = 𝑢𝑘−1 − 𝑢𝑘−2 (4) 

 

 where 𝑢𝑘−2 is the previous control input of the previous input. Although the control input error is not known 

exactly, the error is assumed to be bounded as follows: 

 

(1 − 𝜎𝑙)𝜀̂(𝑢) ≤ 𝜀(𝑢) ≤ (1 + 𝜎𝑢)𝜀̂(𝑢) (5) 

 

 where 𝜎𝑢 is the upper bound and 𝜎𝑙 is the lower bound of the estimation error. If the sampling time is sufficiently 

high, the values of the error bounds will be near zero since the estimation error will be approximately equal to the actual 

error. 

 
2.1. Sliding Surface 

 A sliding surface for a 𝑛𝑡ℎ order single-input-single-output system can be defined as: 

 

𝑠 = (𝑑/𝑑𝑡 + 𝜆)𝑛−1𝑥̃(𝑡) (6) 

 

 where 𝑥̃ is the difference between the desired state and the actual state, i.e., 𝑥̃(𝑡) = 𝑥(𝑡) − 𝑥𝑑(𝑡), and λ is the slope 

of the sliding surface, which is assumed to a positive constant. A second order system will be used as illustrative example 

in this paper. The following sliding surface is obtained from Eq. (6) for a second order system: 

 

𝑠 = 𝑥̇̃ + 𝜆𝑥̃ (7) 

 

3. Controller 
  There is a set of assumptions that must be satisfied in order to develop the model-free control law. The system must 

be completely observable and controllable, i.e., all system’s states can be measured and are controllable Also, if an non-

unity gain is observed for the input, such as shown in Eq. (1), the bounds of gain are assumed to be known. If the 

assumptions are satisfied, a model-free sliding mode controller can be derived. The controller relies solely on state 

measurements and previous control inputs to apply a control signal onto the system in order to drive the system’s states to 

the desired states, i.e., obtain perfect tracking. The discontinuous term, used to handle the system’s uncertainties, is 

designed using Lyapunov’s direct method to ensure closed loop asymptotically stability in the presence of uncertainties. 

 
3.1. Control Law 

 The control law of the sliding mode controller can be obtained by differentiating Eq. (6) with respect to time and 

setting the equation equal to zero. This is required to ensure that once the system’s states are on the sliding surface, they 

will remain there. Differentiating Eq. (6) with respect to time and setting the equation equal to zero results in: 

 

𝑠̇ = 𝑥̈̃ + 𝜆𝑥̇̃ = (𝑥̈ − 𝑥̈𝑑) + 𝜆(𝑥̇ − 𝑥̇𝑑) = 0 (8) 
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 Substituting Eq. (1) into Eq. (8) and writing in terms of the control input, the following control law is obtained: 

 

𝑢 = 𝑏−1[−𝜆(𝑥̇ − 𝑥̇𝑑) − (𝑥̈ − 𝑥̈𝑑)] + 𝑢𝑘−1 − 𝜀(𝑢) (9) 

 

 In order to the controller achieve robustness against system’s uncertainties, a discontinuous term is added to Eq. (9): 

 

𝑢 = 𝑏−1[−𝜆(𝑥̇ − 𝑥̇𝑑) − (𝑥̈ − 𝑥̈𝑑) − 𝜂𝑠𝑔𝑛(𝑠)] + 𝑢𝑘−1 − 𝜀(𝑢) (10) 

 

 where 𝜂 is a small positive constant and 𝑠𝑔𝑛(𝑠) is the signum function of the sliding surface. 

 
3.2. Proof of the Control Form: 

To ensure that the system’s trajectories will be asymptotically stable during the reaching phase, Lyapunov’s direct 

method is used. Lyapunov’s direct method is based on the energy of the system to analyse its stability. Briefly saying, if a 

positive energy system has a decaying energy rate, the system will be stable in Lyapunov sense. Thus, a function that 

describes the system’s energy must be determined, which for this case is defined as: 

 

𝑉(𝑥) = (0.5)𝑠2 (11) 

 

 which is clearly positive definite, which means that the system have positive energy. To obtain the energy rate of the 

system, Eq. (11) can be simply differentiated with respect to time: 

 

𝑉̇(𝑥) = 𝑠̇𝑠 ≤ 0 (12) 

 

 Substituting Eq. (1), Eq. (7) and Eq. (10) into Eq. (12), the following equation is obtained: 

 

𝑉̇(𝑥) = −𝜂|𝑠| ≤ 0 (13) 

 

 Since 𝜂 can only assume positive values, the negative-definiteness of Eq. (13) is guaranteed, therefore the closed 

loop system will be asymptotically stable. 

 
3.3. Switching Gain 
 The control law, described at Eq. (10), is now redefined as: 

 

𝑢̂ = 𝑏̂−1[−𝜆(𝑥̇ − 𝑥̇𝑑) − (𝑥̈ − 𝑥̈𝑑) − 𝐾𝑠𝑔𝑛(𝑠)] + 𝑢𝑘−1 − 𝜀̂(𝑢) (14) 

 

 where 𝐾 is the switching gain and 𝑏̂ is the input gain estimation, which is computed by 𝑏̂ = √𝑏𝑢𝑝𝑏𝑙𝑜𝑤. In order to 

derive a switching gain that ensures closed-loop stability during the reach phase, the sliding condition described at Eq. (13) 

must be satisfied. Therefore, substituting Eq. (12) into Eq. (13) yields: 

 

𝑠𝑠 ≤ −𝜂|𝑠| (15) 

 

 Using the definition of the sliding surface, system model, and the control law, the following switching gain is 

obtained for a second order system: 

 

𝐾 = |𝛽 − 1||𝑥̈ − 𝑥̈𝑑| + |𝛽 − 1|𝜆|𝑥̇ − 𝑥̇𝑑| + |𝑏̂(𝜎𝑢(𝑢𝑘−2 − 𝑢𝑘−1)| + 𝛽𝜂 (16) 

 

 where = √𝑏𝑢𝑝/𝑏𝑙𝑜𝑤 . Also, the control law can be written as follows, using the definition of the estimation error Eq. 

(4): 

 

𝑢̂ = 𝑏̂−1[−𝜆(𝑥̇ − 𝑥̇𝑑) − (𝑥̈ − 𝑥̈𝑑) − 𝐾𝑠𝑔𝑛(𝑠)] + 2𝑢𝑘−1 − 𝑢𝑘−2 (17) 
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 Note that if the input gain parameter is unitary, the control law and the switching gain is simplified to: 

 

𝐾 = (𝜎𝑢(𝑢𝑘−2 − 𝑢𝑘−1) + 𝜂 (18) 

𝑢̂ = [−𝜆(𝑥̇ − 𝑥̇𝑑) − (𝑥̈ − 𝑥̈𝑑) − 𝐾𝑠𝑔𝑛(𝑠)] + 2𝑢𝑘−1 − 𝑢𝑘−2 (19) 

 
3.4. Boundary Layer 

 In order to reduce the chattering effect, introduced by the discontinuous term, a smoothing layer is included in the 

control law. The smoothing control discontinuity essentially assigns a low pass filter to the dynamics of the sliding surface, 

which eliminates the chattering. In order to maintain attractiveness of the boundary layer, the sliding condition, Eq. (13) is 

updated to as follows: 

 

|𝑠| ≥ 𝜙 → 0.5(𝑑𝑠2/𝑑𝑡) ≤ (𝜙̇ − 𝜂)|𝑠| (20) 

 

 where 𝜙 is the boundary layer. Furthermore, a new switching gain must be used in order to satisfy the equation 

described above as shown by: 

 

𝐾̅ = 𝐾 − 𝜙 (21) 

 

 Therefore, the control law becomes: 

 

𝑢̂ = 𝑏̂−1[−𝜆(𝑥̇ − 𝑥̇𝑑) − (𝑥̈ − 𝑥̈𝑑) − 𝐾̅𝑠𝑎𝑡(𝑠/𝜙)] + 2𝑢𝑘−1 − 𝑢𝑘−2 (22) 

 

 Where the 𝑠𝑎𝑡(𝑠/𝜙) function is defined as: 

 

{
𝑠𝑎𝑡(𝑠/𝜙) = 𝑠/𝜙               , 𝑖𝑓 |𝑠/𝜙| ≤ 1

𝑠𝑎𝑡(𝑠/𝜙) = 𝑠𝑔𝑛(𝑠/𝜙)       , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (23) 

 

 The dynamics of the boundary layer are determined by: 

 

𝜙̇ + 𝜆𝜙 = 𝐾 (24) 

 

 where 𝜙(0) = 𝜂/𝜆. This last equation is also known as the balance condition. With this approach, instead of perfect 

tracking it ensures a tracking within a known precision. 

 

4. Simulation 
  To validate the sliding mode controller proposed in this paper, a second order system is used as an illustrative 

example. The plant is a simple mass-spring-damper system. For the first set of simulations the measurement noise is 

ignored, while for the second one, it is included. 

 
4.1. Nonlinear without noise example: 

Suppose the following second order nonlinear mass-spring-damper model is to be controlled: 

 

𝑚𝑥̈ + 𝑐𝑥̇ + 𝑘𝑥2 = 𝑏𝑢 (25) 

 

 where 𝑚 is the mass of the system, 𝑐 is the damping coefficient, 𝑘 is the spring constant, 𝑢 is the control input,  𝑏 is 

the input matrix, 𝑥̈, 𝑥̇ and 𝑥 are the state measurement variables. For this example, the mass is set to 2 kg, the damping 

coefficient to 0.8 N/m/s, the spring constant to 2 N/m and the input matrix varies within 1 and 5. The controller parameters, 

𝜎𝑢 and 𝜂, were defined as 20, 0.5 and 0.1 respectively. 
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 Using the control law, sliding surface, and the switching gain defined previously, a control system using Simulink 

and MATLAB was developed. A fixed step size of 0.0001 seconds was used for the 30 second simulation. The tracking 

problem is to track the reference signal defined as 𝑥𝑑(𝑡) = 𝑠𝑖𝑛 (𝜋𝑡/2). The following results were obtained. 

 

 
Fig. 1: Position comparison and position tracking error. 

 

 Figure 1 displays the position comparison and the position tracking error. The position error is less than 5e-7, which 

is minimal representing outstanding agreement between the state position measurement and tracking position reference 

signal. Thus, near perfect tracking is achieved.  
 

 
Fig. 2: Velocity comparison and velocity tracking error. 

 

 Figure 2 displays the velocity comparison and the velocity tracking error. Once again, near perfect tracking is 

achieved. 
 

 
Fig. 3: Acceleration comparison and acceleration tracking error. 
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 The acceleration comparison and the acceleration tracking error are shown in Figure 3. The error is considerable 

small, with values less than 3e-4. 
 

 
Fig. 4: Sliding condition and control effort. 

 

 Lastly, the sliding condition and the control effort are shown in Figure 4. The sliding condition is always satisfied, 

since the sliding surface remains within the boundary layer. The effect of chattering is eliminated, since the control 

response is smooth. 

 
4.2. Nonlinear with noise example: 

 The same nonlinear second order system defined at Eq. (25) was used to control the nonlinear system with 

measurement noise. A Gaussian noise with known variance and zero mean was included to the system’s state 

measurements. The variance, the mean and the probability distribution function of the noise can be obtained using sensor 

manufacturer’s datasheet. Hence, the induced measurement noise can be considered realistic considering commonly used 

sensors. The 𝜆 and 𝜂 values of the controller must be modified though. As it can be seen by Eq. (16) and Eq. (17), the 𝜆 

value actuate as a gain for the noise. Hence, if it is too high, the system response will become noisy. Also, it is not 

feasibility to reduce the size of the boundary layer to ensure a tracking precision smaller than the peak to peak noise value. 

The following equation is proposed to select 𝜆 regarding the presence of measurement noise: 

 

𝜆 ≤ 𝑏̂(𝜂0/𝑉𝑝𝑝)
1
𝑛 (26) 

 

 where 𝜂0 is the 𝜂 value used for the system without noise and 𝑉𝑝𝑝 is the peak to peak noise value. The 𝑉𝑝𝑝 value can 

be set in different ways. If the user defines 𝑉𝑝𝑝 = 3𝜎𝑛, where  𝜎𝑛 is the noise standard deviation, it is guaranteed that 99% 

of the time the noise value will be within 𝑉𝑝𝑝. The 𝜂 value has also to be updated: 

 

𝜂 = 𝜂0 + (𝜎𝑛/𝜂0)(𝜆/2) (27) 

 

 The same controller used in the previous simulation was used with 𝜆 and 𝑛0 set to 1 and 0.1, respectively. The same 

reference function was used to track as well. The following results were obtained: 
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Fig. 5: Position comparison and position tracking error. 

 

 Figure 1 displays the position comparison and the position tracking error. The position error is less than 0.01 m, 

which is nearly equal to the noise measurement representing outstanding tracking response.  

 

 
Fig. 6: Velocity comparison and velocity tracking error. 

 

 Figure 2 displays the velocity comparison and the velocity tracking error. The velocity tracking error is also due to 

the noise measurement, with values less than 0.01 m/s. 
 

 
Fig. 7: Acceleration comparison and acceleration tracking error. 

 

 Figure 3 displays the acceleration comparison and the acceleration tracking error. The error is less than 0.02 m/s/s, 

but the closed-loop system is achieving an outstanding tracking response in the presence of measurement noise. 
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Fig. 8: Sliding condition and control effort. 

 

 The sliding condition and the control effort are displayed at Figure 8. The boundary layer is expanded, compared to 

the previous simulation, so the tracking precision is reduced. However, the sliding surface remains within the boundary 

layer and the control effort is still smooth. 

 

4. Conclusion 
 A model-free sliding mode control based only in state measurements and previous control inputs was proposed. To 

reduce the well-known chattering effect, introduced by the discontinuous term of the sliding mode controller, a smoothing 

boundary layer was inserted in the controller form. The controller was implemented to a second order nonlinear system and 

was proved to be robust and stable in presence of parameter variation and noise measurement. The control effort response 

was shown to be smooth and the sliding condition was satisfied all time even in the presence of measurement noise. 
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