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Abstract - This paper presents a technology for remotely navigating a magnetized microrobot in three-degree-of-freedom (3-DOF) using
magnetic energy. The magnetic energy source is a magnetic drive unit that consists of six iron-core electromagnets, a soft-iron yoke,
and a soft-iron pole-piece. The dynamic models of the magnetically navigated microrobot were derived from the magnetic field model
in the workspace. An experimental method was applied to define the magnetic field model. Based on the derived dynamic models, a
feed-forward plus standard PID controller was used to control the motion of the microrobot with 3-DOF. Experiment was conducted to
validate the performance of the proposed controller. The experimental results showed 20um motion accuracy in 3-DOF in a motion range
of 10 x 10 x 30mm?.
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1. Introduction

Micromanipulation involves performing tasks using macro scale end-effectors that have micro motion accuracy, and
using micro scale end-effectors directly. For the first case, the end-effector of a micromanipulator has a mechanical arm
connecting it to its base. This type of micromanipulator includes lead-screw driving stages and piezoelectric actuators [1,
2, 3]. However, the mechanical connection produces frictions, vibration, and backlash that degrade the performance of
micromanipulation. For the second case, an end-effector is remotely manipulated without any mechanical connection to the
base of a micromanipulator. This type of micromanipulator is capable of working in hazard and out-of-reach environments.
Magnetic levitation micromanipulators, having remotely manipulated micro end-effector and micrometer motion accuracy,
are most frequently studied and have promising potential in biomedical applications [4, 5, 6, 7, 8].

Active magnetic navigation of a microrobot requires a controlled magnetic field source. Generally, electromagnets are
used for multi-dimensional manipulation of a microrobot [9, 10, 11, 12]. The magnetic field generated by electromagnets is
controlled by a current. The multi-degree of motion freedom of a robot is achieved by setting up special configurations of
multi-electromagnets. Since the strength of the magnetic field decays rapidly as the distance from electromagnet increases,
an iron-core is commonly used to significantly enhance the magnetic field strength outside the electromagnet. This enhanced
magnetic field can then expand the workspace of the microrobot.

Modeling the magnetic field in the microrobots workspace is crucial to developing a magnetic navigation system. For
systems that have air-core coils and permanent magnets produced magnetic field, analytical methods such as Bio-Savart
Law and Amperes Law are applied to find a closed-form magnetic field model. However, for systems that have iron-core
electromagnets produced magnetic field, the iron results in high nonlinearity in the whole system. Therefore, it is difficult to
find a closed-form for modeling the magnetic field in the workspace. Alternative solutions are numerical and experimental
methods which uses simulation and measurement data to find a fitting model that match the real magnetic field with minimum
errTor.

Another important aspect of studying a magnetic navigation system has been focused on development of controllers
for active and precise navigation of a microrobot. These control mechanisms include but not limit to sliding-mode control
[13], feedback linearization [14], fuzzy logic [15], and neural network [16]. In [14], a state feedback controller was proposed
to navigate a small magnetized robot in the vertical direction with 16m accuracy. Lin in [17] proposed using a combination of
traditional sliding-mode control system and a radial basis function network estimator for positioning the levitated object of a
magnetic levitation system. The sliding-mode controller was used to provide basic levitation of the object. The estimator was
then implemented to improve the robustness of levitation.Khamesee in [18] compared the performance of a standard PID and
adaptive controllers on a magnetic levitation stage. It was indicated that the performance of navigation could be improved by
choosing advanced controllers.

This paper is organized as follows: Section 2 introduces the configuration of the magnetic levitation system. Section 3
presents the modeling of the magnetic field in the workspace of the microrobot. The controller design is presented in Section
4. Then the experimental results will be shown in Section 5. Section 6 briefly summarizes the work in this paper.
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2. Configuration of the Magnetic Levitation System
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Fig. 1: The configuration of the magnetic levitation system.

The magnetic levitation system was previously developed in the Maglev Microroboticlab, at the University of Waterloo.
Its configuration is shown in Fig. 1. The system consists of a magnetic drive unit, laser sensor position detection system,
a dSPACE controller, a host computer, and an amplifier as current output unit.The magnetic drive unit (MDU) is used to
generate the source magnetic field for levitating a magnetized object. It is composed of soft iron yoke, six pairs of iron-core
electromagnets,and a soft iron pole-piece. The pole-piece connects the electromagnets, and forms the desired magnetic field in
the workspace. The relatively permeability r of the yoke andthe pole-piece is 4000. All electromagnets have a configuration of
840 turns, 20mm outer radius, 10mm inner radius, and 40mm length. A dSPACE real-time controller functions as the central
control unit of the whole system. It has ControlDesk user interface, and is able to compile directly in Simulink software
environment. The laser sensor used for position detection is LS-5041 from KEYENCE Company. Three sets of laser sensor,
installed surrounding the workspace, are used to measure the three dimensional position of the levitated microrobot.

3. System Modeling

3.1. Modeling the Magnetic Field in the Workspace

In a contact-free levitation, a magnetic levitation system generates satisfied levitation force to compensate the gravity
force on a magnetized object, and to maintain a desired dynamics of the object. A small object that is evenly magnetized with
a total magnetization M is placed in an external magnetic field, the total force on the magnetized object is:

F =V(il-B) (1)

where, B is the magnetic flux density in the workspace where the object stays. In this study, the magnetization direction

of the object is supposed to be aligned in the z-direction, i.e., M = [0,0, My]. Therefore, the magnetic forces are related to the
gradient of the vertical direction magnetic ﬁeld[@, @, &]
dx ' dy’ dz

For the developed magnetic levitation system, it is impossible to find a closed form for modeling the magnetic field
in the air-gap, because the soft-iron yoke, iron-core electromagnets, and pole-piece simply result in high nonlinearity in the
whole system. Therefore, experimental method is applied. A Hall-effect sensor was used to scan the workspace and to record
the magnetic flux density in real time. Fig. 2 is the magnetic flux density measured at 7Smm below the pole-piece while
electromagnet 1 was powered with one Ampere current.

The magnetic field produced by one electromagnet is linear to the current in this electromagnet. According to the

measured data presented in Fig. 2, the magnetic field produced by electromagnet 1 can be modeled as:

B, = (a1.x* +bix+ci)ly 2
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Fig. 2: Magnetic flux density measured at 7Smm below the pole-piece while electromagnet 1 is powered with one Ampere current.

where, a, is a function of the z. by, and ¢, are functions of z and y. /; is the current in electromagnet 1.
The magnetic flux density produced by other electromagnets can be modeled in the same way. The total magnetic flux
density in the workspace is the linear summation of magnetic flux density produced by all electromagnets:

6
B.=Y B 3)
i=1
By considering the geometric symmetry, the total magnetic flux density can be expressed as:
B, = (al)cx2 +b1x+ Clx)ll + (ClZJCX2 + C2x)12
+(a1xX® —brx +c1) B + (aad® + baxx + cax) Iy
+(a5xx2 + CSx)IS + (Cl4xx2 —bax+ C4x)l6 4)

where, ayy, a4, and as, are functions of z. by, cay, ccx, and cs, are functions of z and y. I;(i = 1,...,6) are the current in
the number i electromagnet.

3.2. Dynamic Modeling

Substitute equation 4 into the force mode represented by equation 1, and linearize at the center [0,0,z9,lo] of the
workspace, The magnetic forces on a magnetized object with volume magnetization M are expressed as:

0B .

=M axz = 2xlo (ax120 + bx1) + (ax2z0 + by2) (i1 — i3+ is — i) Q)
0B . L .

Fy = MT; = 2y10 (aylzo +by1) + (ClyZZ() +b 72) (ll +2l2 +i3—1y— 215 — l6) (6)
JB, .

F,=M Fi (a;z+b;) o +azlo (z—z20) + (azz0 +be) (i + iz + i3 + g +is +ie) (7

where I is the current in electromagnets when the levitated robot stays at zg. All coefficients in equations 5-7 are
deduced from coefficients in equation 4. i;, j = 1,,6 are the perturbed current in the jth electromagnet.
In a contact free levitation state, the dynamic of the levitated object is obtained using the Newtons Second Law:

mit = 2xly (ax120 + bx1) + (@x220 + bx2) (i1 — i3 +i4 — i) ®)
—
m§i = 2yl (ay120 +by1) + (@220 + bya) (i1 + 20 + i3 — ia — 2is — i) ©)
uy
mz = —a,ly (z—z0) + (azz0 + b;) (i; +ip + i3 + ig + is + ig) (10)

u;

where, m is the total mass of the microrobot.
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3.3. PID Control

The levitation in horizontal directions is internally stable. However, the levitation in vertical direction is internally
unstable due to the gravity force. Therefore, feedback control is necessary for a stable levitation. Using the derived dynamics
model, a PID plus feed forward controller is proposed to control the three-dimensional motion of a small permanent magnet
in a contact free space. The schematic of the controller is shown in Fig. 3. In the vertical direction levitation, the feed forward
controller provides the major control signal that compensates the gravity force at steady state:

xoayODZo + u.u,.u i i +

A PID ————"—{Conv|[ "2 Maglev
xr’yr’Zr

Fig. 3: Schematic of the PID plus feed forward controller for three-dimensional motion control.

mg
_ 11
2a,z —azo+ b, (1)

The PID controller is used to compensate for the actual signal. Three virtual control inputs uy, iy, u, are calculated from
the PID control law:

Iy

U(xyz) (t) = er(X,y,z) (t) +K; /e(x,y.z) (t) + KDé(x,y,z) (t) (12)

where ey, ey, e; are the error between the reference and the real positions of the microrobot in three axis.
The virtual control inputs are then converted to actual current input to electromagnets using the pseudo inverse method,
which minimizes the normal of input signal.

i 0.25 0.0833 0.1667
i 0 0.1667 0.1667
x| |—0.25 0.0833 0.1667| |** 3
il = 1025 —0.0833 0.1667| |% (13)
is 0 —0.1667 0.1667| L%
is —0.25 —0.0833 0.1667

Conv

4. Experiment and Results

Three-dimensional motion control experiment was conducted to validate the performance of the proposed controller.
In the experiment, the levitated microrobot is a small cylindrical permanent magnet that has Smm in diameter and Smm in
height. The mass of the microrobot is 0.83g. It has a remnant magnetic flux density of 0.29T. The configuration of the
levitated microrobot is shown in Fig. 4. The parameters of the PID controllers in three axis are shown in Table 1

Table 1: Parameters of PID controllers.

Controller Kp K; Kp
PID-x 1000 | 1500 | 0.1
PID-x 1000 | 1500 | 0.1
PID-x 4500 | 2000 | 30

The step motion response in three directions was recorded in the experiment. The experimental results are presented in
Fig. 5. The experimental performance shows that the proposed PID plus feed forward controller can provide 20um motion
accuracy in three axes in a working volume of 10mm X 10mm x 30mm. The working volume is limited by the dimension of
the levition robot, as well as the configuration of the magnetic drive unit. The levitation in the vertical direction is internally
unstable. Therefore, levitation in this direction is sensitive to the environment noise and power supply quality. The overshoot
of the step response in the vertical direction can be smoothed by adding damping element to the robot. It should be noted
that cross-coupling effect exists among three motion axes. The motion in y direction has a significant impact on the stable
levitation of the other two directions. In order to reduce the cross-coupling effect, advanced controller, such as LQG controller,
can be implemented to control the motion of the microrobot.
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Fig. 5: Three-dimensional step-response motion control of the microrobot.

5. Conclusion

This paper presented the modeling and control of a magnetically navigated micromanipulator. The magnetic field
model in the workspace was developed using the experimental method. The dynamic models of the microrobot show high
nonlinearity. The acquired models were linearized to develop PID controller for the three-dimensional motion control of the

microrobot. The PID controllers show acceptable performance in navigation in a motion range of 10 x 10 x 30mm?.

In the experiment, it was noted that cross-coupling effect existed. This reduced the positioning accuracy, and degraded
the stability of navigation. A future work could be involved in the development of advanced controller to reduce the cross-
coupling effect.

References

[1] J. Liu, et al, ”Automated vitrification of embryos,” IEEE Robotics and Automation Magazine, 2015.

[2] F. Karimirad, B. Shirinzadeh, W. Yan ,”A vision-based methodology to dynamically track and describe cell deformation
during cell micromanipulation,” Internation Journal of Optomechatronics, vol. 7, no. 1, pp. 33-45, 2013.

[3] E. Avci, et al, "Toward high-speed automated micromanipulation,” IEEE International Conference on Robotics and
Automation, Karlsruhe, Germany, 2013, pp.1718-1723.

[4] M. Mehrtash, N. Tsuda, M.B. Khamesee, ”Bilateral macro-micro teleoperation using magnetic levitation,” IEEE/ASME
Transactions on Mechatronics, vol. 16, no. 3, pp.459-469, 2011.

[5] K. Peyer, L. Zhang, B. J. Nelson, ”Bio-inspired magnetic swimming microrobots for biomedical applications,” Nanoscale,
vol. 5, pp. 1259-1272, 2013.

[6] S. Martel, et al, Flagellated magnetotactic bacteria as controlled MRI-trackable propulsion and steering systems for
medical nanorobots operating in the human microvasculature,” The International Journal of Robotic Research, vol.28,
no. 4, pp.571-582, 2009.

[7] M. S. Grady, et al, "Nonlinear magnetic stereotaxis: three-dimensional in vivo remote magnetic manipulation of a small
object in canine brain,” Medical Physics, vol. 17, no. 3, pp.405-415, 1990.

[8] F. Carpi, C. Pappone, "Magnetic maneuvering of endoscopic capsules by means of a robotic navigation system,” IEEE
Transactions on Biomedical Engineering, vol. 56, no. 5, pp.1482-1490, 2009.

[9] C. Elbuken, M. B. Khamesee, "Design and implementation of a micromanipulation system using a magnetically levitated
MEMS robot,” IEEE/ASME Transactions on Mechatronics, vol. 14, no. 4, pp. 434-445, 2009

102-5



[10] M. P. Kummer, et al, ”OctoMag: an electromagnetic system for 5-DOF wireless micromanipulation,” IEEE Transactions
on Robotics, vol. 26, no. 6, pp.1006-1017, 2010.

[11] E. B. Steager, et al, ”Automated biomanipulation of single cells using magnetic microrobots,” International Journal of
Robotic Research, vol. 32, no. 3, pp.346-359, 2013.

[12] C. Gosse, V. Croquette, "Magnetic tweezers: micromanipulation and force measurement at the molecular level,” Bio-
physical Journal, vol. 82, pp.314-3329, 2002.

[13] B. M. Mustapha, J. D. Jiya, ’Sliding mode control of a magnetic levitation system,” International Journal of Engineering
and Applied Sciences, vol. 6, no. 2, pp.14-17, 2014.

[14] E. Shameli, M. B. Khamesee, J. P. Huissoon, ”Nonlinear controller design for a magnetic levitation device,” Microsys-
tem Technologies, vol. 13, no. 8, pp. 831-835, 2007.

[15] S. K. Hong, et al, "Robust fuzzy control of a magnetic bearing system subject to harmonic disturbance,” IEEE Transac-
tions on Control Systems Technology, vol. 8, no. 2, pp. 366-371, 2000.

[16] R.J. Wai, et al, ”Adaptive fuzzy-neural-network control for maglev transportation system,” IEEE Transactions on Neural
Networks, vol. 19, no. 1, pp. 54-70, 2008.

[17] F. J. Lin, et al, "Intelligent sliding-mode control using RBFN for magnetic levitation system,” IEEE Transactions on
Industrial Electronics, vol. 54, no. 3, pp. 1752-1762, 2007.

[18] M. B. Khamesee, et al, "Design and control of a microrobotic system using magnetic levitation,” IEEE/ASME Transac-
tions on Mechatronics, vol. 7, no. 1, pp. 1-14, 2002.

102-6



	Introduction
	Configuration of the Magnetic Levitation System
	System Modeling
	Modeling the Magnetic Field in the Workspace
	Dynamic Modeling
	PID Control

	Experiment and Results
	Conclusion

