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Abstract – Many physical systems are nonlinear and non-Gaussian in their state-space models. Particle Filter (PF) is a sequential 

Monte Carlo method that uses sets of sample scenarios, i.e. “particles” to represent probability densities, and it can be applied for state 

estimation in nonlinear/non-Gaussian state-spaces models. Conventional variants of PF do not assume any noise for the system input, 

while the corresponding measurement models disregard the system input as an argument.  In reality, physical systems receive inputs 

contaminated with the measurement noise. In this work, a generalized particle filter algorithm is developed that handles the noisy input 

of the state-space model in a probabilistic framework. Three advanced variants of PF are then developed to improve the filtering 

accuracy. Performance of the developed filters are then verified with simulation of univariate and bivariate non-stationary growth 

models as benchmarks.  
 

Keywords: Dynamic system, Particle Filter, State estimation, Noisy input, Non-stationary growth model 

 

 

1. Introduction 
 In many engineering problems, internal state of a system is to be estimated using sequential measurements on time-

varying inputs and outputs of the system. State-space model of a dynamical system includes at least two parts: a system 

model that describes the state evolution with time, and a measurement model that shows the relation of the state and the 

measurements. Sequential Bayesian estimation is a rigorous approach for state estimation in dynamical systems. The 

optimal algorithm in closed form is called Kalman Filter (KF) [1], which applies only for first order Markovian systems 

with linear/Gaussian state-space models. Extended Kalman Filter (EKF) is a variant of KF that projects its applications to 

nonlinear systems [2]. With availability of low cost computational power, Monte Carlo methods have been applied to 

simulate the state probability distribution using weighted sample scenarios, called particles [3]. The so called Particle Filter 

(PF) is not restricted to linear/Gaussian systems and therefore, its variants have found a wide range of applications in 

various fields of science and engineering [4-8]. A dynamical system that receives time-varying input has the following 

state-space model: 

 

�̇� = 𝐹(𝑥, 𝑢) + 𝜏 (1) 

𝑦 = 𝐺(𝑥, 𝑢) + 𝜈 (2) 

 

 Where 𝑥 is the state, 𝑢 is the input and 𝑦 is the output of the system. 𝜏 is the process noise and 𝜈 is the measurement 

noise. In discrete form, for a first order Markov process, state-space model at a time step 𝑘 can be presented as: 

 

𝑥𝑘 = 𝐹(𝑥𝑘−1, 𝑢𝑘) + 𝜏𝑘 (3) 

𝑦𝑘 = 𝐺(𝑥𝑘, 𝑢𝑘) + 𝜈𝑘 (4) 

 

 Generic PF overlooks the role of input 𝑢𝑘in the system model [3]. Inclusion of the input into the system model has 

just been attended in a few recent works. However, in these works, the inputs of the systems have still been treated as 

deterministic variables [9,10]. In the real systems as illustrated in Fig. 1, the inputs are noisy, and there is a need for the 

development of PF framework such that it can manage general class of dynamical systems including noisy inputs. In a 

recent research work, the authors presented a PF based framework to address the stated problems [11]. In this paper, new 
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variants of PF will be developed to manage the stochastic nature of the system input. To verify performance of the 

developed framework, a comparative study will be presented using one-dimensional and two-dimensional generalized non-

stationary growth model. A conclusive summary of the paper will be provided in the last section. 

 

Fig. 1: Configuration of state estimation filter. 

 

2. Sequential Bayesian State Estimation 
           In a dynamical system with discrete state-space model, system model 𝐹 estimates the state 𝑥𝑘 with an uncertainty of 

𝑓𝑥(𝑥𝑘|𝑥𝑘−1, 𝑢𝑘). At the same time, measurement model 𝐺 estimates the output 𝑦𝑘 with a marginal distribution of 

𝑓𝑦(𝑦𝑘|𝑥𝑘, 𝑢𝑘). We assume that uncertainty of 𝐹 and marginal distribution of 𝐺 are available. We also assume known 

densities for the initial state 𝑓𝑥(𝑥0) and the system input 𝑓𝑢(𝑢𝑘). If the historical data on the input 𝑌𝑘 ≜ {𝑦1, 𝑦2, … , 𝑦𝑘} and 

the output 𝑈𝑘 ≜ {𝑢1, 𝑢2, … , 𝑢𝑘} become available, the marginal filtering density can be found using Bayes’ theorem: 

 

𝑓𝑥(𝑥𝑘|𝑌𝑘, 𝑈𝑘) = 𝑓𝑦,𝑢(𝑦𝑘, 𝑢𝑘|𝑥𝑘)𝑓𝑥(𝑥𝑘|𝑌𝑘−1, 𝑈𝑘−1)/𝑓𝑦,𝑢(𝑦𝑘, 𝑢𝑘|𝑌𝑘−1, 𝑈𝑘−1) (5) 

 

 Where,  

 

𝑓𝑥(𝑥𝑘|𝑌𝑘−1, 𝑈𝑘−1) = ∫ 𝑓𝑥(𝑥𝑘|𝑥𝑘−1) 𝑓𝑥(𝑥𝑘−1|𝑌𝑘−1, 𝑈𝑘−1) 𝑑𝑥𝑘−1 (6) 

𝑓𝑦,𝑢(𝑦𝑘, 𝑢𝑘|𝑥𝑘) = 𝑓𝑦(𝑦𝑘|𝑥𝑘, 𝑢𝑘)/𝑓𝑥(𝑥𝑘) ∫ 𝑓𝑥(𝑥𝑘|𝑥𝑘−1, 𝑢𝑘) 𝑓𝑥(𝑥𝑘−1) 𝑑𝑥𝑘−1 (7) 

 

and  

𝑓𝑦,𝑢(𝑦𝑘, 𝑢𝑘|𝑌𝑘−1, 𝑈𝑘−1) = ∫ 𝑓𝑦,𝑢(𝑦𝑘, 𝑢𝑘|𝑥𝑘) 𝑓𝑥(𝑥𝑘|𝑌𝑘−1, 𝑈𝑘−1) 𝑑𝑥𝑘 (8) 

 

 The system output 𝑢𝑘 is independent from the previous state of the system, therefore, the probability transition 

density in Eq. 6 reduces to, 

 

𝑓𝑥(𝑥𝑘|𝑥𝑘−1) = ∫ 𝑓𝑥(𝑥𝑘|𝑥𝑘−1, 𝑢𝑘) 𝑓𝑢(𝑢𝑘) d𝑢𝑘 (9) 

 

 The state probability 𝑓𝑥(𝑥𝑘) in Eq. 7 can be found sequentially by integrating the transition density of Eq. 9, 

 

𝑓𝑥(𝑥𝑘) = ∫ 𝑓𝑥(𝑥𝑘|𝑥𝑘−1) 𝑓𝑥(𝑥𝑘−1) d𝑥𝑘−1 (10) 

 

 In this way, the posterior filtering density at time step 𝑘 is calculated by Eq. 5.  

 

3. State Estimation by PF 
 Instead of a continuous mathematical function, the posterior density in Eq. 5 can be numerically represented by a set 

of weighted scenarios, known as particles. 
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𝑓𝑥(𝑥𝑘|𝑌𝑘, 𝑈𝑘) ≈ ∑ 𝜔𝑘
𝑖  𝛿(𝑥𝑘 − 𝑥𝑘

𝑖 )

𝑚

𝑖=1

 (11) 

 

 Where 𝑥𝑘
1, … , 𝑥𝑘

𝑚 and 𝜔𝑘
1 , … , 𝜔𝑘

𝑚 are the particles and the corresponding weights respectively, such that, ∑ 𝜔𝑘
𝑖𝑚

𝑖=1 =

1. To find the weights 𝜔𝑘
𝑖  in Eq.(11), when new measurements on the input 𝑢𝑘 and the output 𝑦𝑘 become available, the 

weights can be calculated using the values from last time step. 

 

𝜔𝑘
𝑖 ∝ 𝜔𝑘−1

𝑖 𝑓𝑦,𝑢(𝑦𝑘, 𝑢𝑘|𝑥𝑘
𝑖 ) 𝑓𝑥(𝑥𝑘

𝑖 |𝑥𝑘−1
𝑖 )/𝑔𝑥(𝑥𝑘

𝑖 |𝑥𝑘−1
𝑖 , 𝑦𝑘, 𝑢𝑘) (12) 

 

 Where 𝑔𝑥(𝑥𝑘|𝑥𝑘−1
𝑖 , 𝑦𝑘 , 𝑢𝑘) is the importance density with an optimal value to minimize the variance of the weights, 

that reduces Eq. 12 to: 

 

𝜔𝑘
𝑖 = 𝜔𝑘−1

𝑖 ∫ 𝑓𝑦,𝑢(𝑦𝑘, 𝑢𝑘|𝑥𝑘) 𝑓𝑥(𝑥𝑘|𝑥𝑘−1
𝑖 ) d𝑥𝑘 (13) 

 

 The optimal result in Eq. (13) cannot be found, because the posterior is not yet available. That is why the choice of 

importance density 𝑔𝑥 remains a filter design decision that has no unique global answer, and it is addressed differently in 

several variants of PF [12]. In the following, four variants of PF are developed with the ability to receive stochastic input.  

 
3.1. Generic Particle Filter  

 A simple candidate for the importance density is the prior: 

 

𝑔𝑥(𝑥𝑘|𝑥𝑘−1
𝑖 , 𝑦𝑘, 𝑢𝑘) =  𝑓𝑥(𝑥𝑘|𝑥𝑘−1

𝑖 ) (14) 

 

that reduces Eq. 12 to  

 

𝜔𝑘
𝑖 ∝ 𝜔𝑘−1

𝑖 𝑓𝑦,𝑢(𝑦𝑘, 𝑢𝑘|𝑥𝑘
𝑖 ) (15) 

 

 The particles 𝑥𝑘
𝑖  are propagated before the measurements on the input 𝑢𝑘 are available, and they are consequently 

independent at each time step, i.e. 𝑓𝑢(𝑢𝑘|𝑥𝑘
𝑖 ) = 𝑓𝑢(𝑢𝑘). We can therefore rewrite Eq. 15 as, 

 

𝜔𝑘
𝑖 ∝ 𝜔𝑘−1

𝑖 𝑓𝑦(𝑦𝑘|𝑥𝑘
𝑖 , 𝑢𝑘) (16) 

 

 The propagated particles 𝑥𝑘
𝑖  and their corresponding weights 𝜔𝑘

𝑖  represent the posterior density as laid out in Eq. 

(11). A common problem with the generic PF is that after some iteration, one particle holds the entire share of the weights 

and the other particles retain no weight. This so-called degeneracy can be avoided by resampling a set of new particles 

from the posterior density, in case the effective sample size 𝑁𝑒𝑓𝑓 falls below a predefined threshold 𝑁𝑇 [13]. Table 1 

presents the generic PF process for state estimation. 
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Table 1: PF process. 
 

{(𝑥𝑘
𝑖 , 𝜔𝑘

𝑖 )}𝑖=1:𝑚 = PF[{(𝑥𝑘−1
𝑖 , 𝜔𝑘−1

𝑖 )}𝑖=1:𝑚, 𝑦𝑘 , 𝑢𝑘] 

 Draw input samples: 𝑢𝑘
𝑖 ~𝑓𝑢(𝑢𝑘) 

 Propagate priors: 𝑥𝑘
𝑖 ~𝑓𝑥(𝑥𝑘|𝑥𝑘−1

𝑖 , 𝑢𝑘
𝑖 ) 

 Update the weights: 𝜔𝑘
𝑖 ′ = 𝜔𝑘−1

𝑖 𝑓𝑦(𝑦𝑘|𝑥𝑘
𝑖 , 𝑢𝑘

𝑖 ) 

 Normalize the weights: 𝜔𝑘
𝑖 = 𝜔𝑘

𝑖 ′/ ∑ 𝜔𝑘
𝑖 ′𝑚

𝑖=1 . 

 Construct posterior density: 𝑓𝑥(𝑥𝑘|𝑦𝑘 , 𝑢𝑘) ≈ ∑ 𝜔𝑘
𝑖 𝛿(𝑥𝑘 − 𝑥𝑘

𝑖 )𝑚
𝑖=1 . 

 Check effective sample size: 𝑁𝑒𝑓𝑓 ≈ 1/ ∑ (𝜔𝑘
𝑖 )2𝑚

𝑖=1 . 

 If 𝑁𝑒𝑓𝑓 ≤  𝑁𝑇, Resample:  {(𝑥𝑘
𝑖 , 𝜔𝑘

𝑖 = 1/𝑚)}𝑖=1:𝑚~𝑓𝑥(𝑥𝑘|𝑦𝑘 , 𝑢𝑘) 

 
3.2. Auxiliary Particle Filter (APF) 

 As stated earlier, the choice of importance density is crucial in a filter design. If the importance density only 

corresponds to the prior density, like generic PF, the propagated particles may land in the regions with low likelihoods 

where the corresponding weights get small values. To improve the filtering performance, we may give more chance to the 

particles, which will find more likelihood after propagation. For this objective, in auxiliary particle filter (APF), the 

particles are drawn from the joint distribution of the prior and the likelihood [5]. Therefore, the importance density is 

defined the joint density of the state 𝑥𝑘 and the index of the particle 𝑗 in the previous step, i.e. 𝑔𝑥,𝑗(𝑥𝑘 , 𝑗|𝑌𝑘−1, 𝑈𝑘−1). From 

Bayes’ rule the joint density of  𝑥𝑘 and 𝑗 is found as 

 

𝑓𝑥,𝑗(𝑥𝑘, 𝑗|𝑌𝑘, 𝑈𝑘) ∝ 𝑓𝑦,𝑢(𝑦𝑘, 𝑢𝑘|𝑥𝑘)𝑔𝑥,𝑗(𝑥𝑘, 𝑗|𝑌𝑘−1, 𝑈𝑘−1) 
(17) 

                                = 𝜔𝑘−1
𝑗

𝑓𝑦,𝑢(𝑦𝑘, 𝑢𝑘|𝑥𝑘) 𝑓𝑥(𝑥𝑘|𝑥𝑘−1
𝑗

) 

 

 𝑥𝑘 is still unknown and it can be estimated by a representative value 𝜇𝑘
𝑗
 from the prior, which may be chosen the 

mean, the mode or a random draw from the prior. Therefore, 

 

𝑓𝑥,𝑗(𝑥𝑘, 𝑗|𝑌𝑘, 𝑈𝑘) ≈ 𝜔𝑘−1
𝑗

𝑓𝑦,𝑢(𝑦𝑘, 𝑢𝑘|𝜇𝑘
𝑗
) 𝑓𝑥(𝑥𝑘|𝑥𝑘−1

𝑗
) (18) 

 

 That reduces Eq. (12) to 

 

𝜔𝑘
𝑖 ∝ 𝑓𝑦,𝑢(𝑦𝑘, 𝑢𝑘|𝑥𝑘

𝑖 )/𝑓𝑦,𝑢 (𝑦𝑘, 𝑢𝑘|𝜇𝑘
𝑗𝑖

) (19) 

 

 And similar to Eq. (16) 

 

𝜔𝑘
𝑖 ∝ 𝑓𝑦(𝑦𝑘|𝑥𝑘

𝑖 , 𝑢𝑘)/𝑓𝑦 (𝑦𝑘|𝜇𝑘
𝑗𝑖

, 𝑢𝑘) (20) 

 

 The density function to draw candidate particles from the last step and propagate to the current step is therefore, 

 

𝑓𝑥(𝑥𝑘−1|𝑦𝑘, 𝑢𝑘) ≈ ∑ 𝜔𝑘−1
𝑗

𝑓𝑦(𝑦𝑘|𝜇𝑘
𝑗
, 𝑢𝑘) 𝛿(𝑥𝑘−1 − 𝑥𝑘−1

𝑗
)

𝑚

𝑗=1

 (21) 

 

 Table 2 summarizes the process of APF for state estimation. 
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Table 2: APF process. 

 

{(𝑥𝑘
𝑖 , 𝜔𝑘

𝑖 )}𝑖=1:𝑚 = 𝐴𝑃𝐹[{(𝑥𝑘−1
𝑖 , 𝜔𝑘−1

𝑖 )}𝑖=1:𝑚, 𝑦𝑘 , 𝑢𝑘] 

 Draw input samples: 𝑢𝑘
𝑖 ~𝑓𝑢(𝑢𝑘) 

 Generate representatives: 𝜇𝑘
𝑖 = 𝐸(𝑥𝑘|𝑥𝑘−1

𝑖 , 𝑢𝑘
𝑖 ) 

 Find representative weights: 𝜔𝜇𝑘
𝑖 ∝ 𝜔𝑘−1

𝑖 𝑓𝑦(𝑦𝑘|𝜇𝑘
𝑖 , 𝑢𝑘

𝑖 ) 

 Construct representative density:  𝑓𝑥(𝑥𝑘−1|𝑦𝑘 , 𝑢𝑘) ≈ ∑ 𝜔𝜇𝑘
𝑖 𝛿(𝑥𝑘−1 − 𝑥𝑘−1

𝑖 )𝑚
𝑖=1 . 

 Draw particles from last step: 𝑥𝑘−1
𝑖 ~𝑓𝑥(𝑥𝑘−1|𝑦𝑘 , 𝑢𝑘) 

 Redraw input samples: 𝑢𝑘
𝑖 ~𝑓𝑢(𝑢𝑘) 

 Propagate priors: 𝑥𝑘
𝑖 ~𝑓𝑥(𝑥𝑘|𝑥𝑘−1

𝑖 , 𝑢𝑘
𝑖 ) 

 Regenerate representatives: 𝜇𝑘
𝑖 = 𝐸(𝑥𝑘|𝑥𝑘−1

𝑖 , 𝑢𝑘
𝑖 ) 

 Update the weights: 𝜔𝑘
𝑖 ∝ 𝑓𝑦(𝑦𝑘|𝑥𝑘

𝑖 , 𝑢𝑘
𝑖 )./𝑓𝑦(𝑦𝑘|𝜇𝑘

𝑖 , 𝑢𝑘
𝑖 ) 

 Construct posterior density: 𝑓𝑥(𝑥𝑘|𝑦𝑘 , 𝑢𝑘) ≈ ∑ 𝜔𝑘
𝑖 𝛿(𝑥𝑘 − 𝑥𝑘

𝑖 )𝑚
𝑖=1 . 

 Check effective sample size: 𝑁𝑒𝑓𝑓 ≈ 1/ ∑ (𝜔𝑘
𝑖 )2𝑚

𝑖=1 . 

 If 𝑁𝑒𝑓𝑓 ≤  𝑁𝑇, Resample:  {(𝑥𝑘
𝑖 , 𝜔𝑘

𝑖 = 1/𝑚)}𝑖=1:𝑚~𝑓𝑥(𝑥𝑘|𝑦𝑘 , 𝑢𝑘) 

 
3.3. Regularized Particle Filter (RPF) 

 When the particles are drawn from a discrete distribution function, the particles with smaller weights have lower 

chance, while the highly weighted particles will repeatedly be chosen, causing loss of diversity. This problem can be 

prevented with constructing a continuous distribution function for the posterior density. Regularization is usually done 

using rescaled kernel density 𝐾ℎ(𝑥) = ℎ−𝐷𝐾(𝑥/ℎ), where ℎ > 0 is the bandwidth with an optimal value of ℎ𝑜𝑝𝑡 for a 𝐷 

dimensional state of 𝑥 [14]. Equation 11 can therefore be restated in the continuous form as 

 

𝑓𝑥(𝑥𝑘|𝑌𝑘 , 𝑈𝑘) ≈ ∑ 𝜔𝑘
𝑖 𝐾ℎ(𝑥𝑘 − 𝑥𝑘

𝑖 )

𝑚

𝑖=1

 (22) 

 

 There are different choices of kernel functions among which Epanechnikov and Gaussian functions are commonly 

used for regularization [15]. The process of RPF technique for state estimation is outlined in Table 3.  

 
Table 3: RPF process. 

 

{(𝑥𝑘
𝑖 , 𝜔𝑘

𝑖 )}𝑖=1:𝑚 = 𝑅𝑃𝐹[{(𝑥𝑘−1
𝑖 , 𝜔𝑘−1

𝑖 )}𝑖=1:𝑚, 𝑦𝑘 , 𝑢𝑘] 

 Draw input samples: 𝑢𝑘
𝑖 ~𝑓𝑢(𝑢𝑘) 

 Propagate priors: 𝑥𝑘
𝑖 ~𝑓𝑥(𝑥𝑘|𝑥𝑘−1

𝑖 , 𝑢𝑘
𝑖 ) 

 Update the weights: 𝜔𝑘
𝑖 ′ = 𝜔𝑘−1

𝑖 𝑓𝑦(𝑦𝑘|𝑥𝑘
𝑖 , 𝑢𝑘

𝑖 ) 

 Normalize the weights: 𝜔𝑘
𝑖 = 𝜔𝑘

𝑖 ′/ ∑ 𝜔𝑘
𝑖 ′𝑚

𝑖=1 . 

 Regularize posterior density: 𝑓𝑥(𝑥𝑘|𝑦𝑘 , 𝑢𝑘) ≈ ∑ 𝜔𝑘
𝑖 𝐾ℎ(𝑥𝑘 − 𝑥𝑘

𝑖 )𝑚
𝑖=1 . 

 
3.4. Regularized Auxiliary Particle Filter (RAPF) 

 While APF improves the sampling process by drawing the particles of larger likelihoods in the next step, it still 

suffers from loss of diversity and sensitivity to the outliers in the proposal particles. If the process noise is small, sampling 

the particles with higher probability and propagating them to the next step will lead to congestion of the priors within a 

narrow neighbourhood, which does not represent the distribution of the state. This deficiency is addressed in RAPF 

technique by regularizing the empirical density 𝑓𝑥(𝑥𝑘−1
𝑗

|𝑦𝑘 , 𝑢𝑘) and sampling from the resulting continuous distribution 

[16]. Similar to RPF, regularization of discrete density functions is doable with rescaled Kernel density: 
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𝑓𝑥(𝑥𝑘−1|𝑦𝑘 , 𝑢𝑘) ≈ ∑ 𝜔𝑘−1
𝑗

 𝑓𝑦(𝑦𝑘|𝜇𝑘
𝑗

, 𝑢𝑘) 𝐾ℎ(𝑥𝑘−1 − 𝑥𝑘−1
𝑗

)

𝑚

𝑗=1

 (22) 

 

 The likelihood of the representative particle 𝑓𝑦(𝑦𝑘|𝜇𝑘
𝑗

, 𝑢𝑘) may end up with small values, leading to large weights 

𝜔𝑘
𝑖  for the corresponding particles through Eq. (20). This will nullify the effect of the other particles with small weights, 

whereas they are equally consuming the computational efforts. To control the variance of the weights and improve 

effectiveness of the sampled particles, a rejection algorithm can be employed by defining an acceptance threshold for the 

samples, i.e., > 𝜔𝑘
𝑖 > 1/𝑤 , where 𝑤 > 1 is a chosen design factor for rejection. RAPF technique with rejection algorithm 

is outlined in table 4.  

 

4. Verification of Performance 
 To evaluate and compare performance of the developed filters, the well-known non-stationary growth model (NGM) 

[17] will be utilized. We have enhanced this model with non-uniform steps ∆𝑡 and including the input 𝑢 for performance 

evaluation of the systems with stochastic inputs [11,18]. 

 
𝑢𝑘 = 𝑢𝐴𝑘

+ 𝜅𝑘  

𝑥𝑘 =
1

2
𝑥𝑘−1∆𝑡𝑘 +

25 (𝑥𝑘−1 + 𝑢𝐴𝑘
)∆𝑡𝑘

1 + (𝑥𝑘−1 + 𝑢𝐴𝑘
)2∆𝑡𝑘

2 + 8 ∆𝑡𝑘𝑢𝐴𝑘
 cos(1.2(𝑘 − 1))/|𝑢𝐴𝑘

| + 𝜏𝑘 (24) 

𝑦𝑘 =
1

20
𝑥𝑘(𝑥𝑘 + 𝑢𝐴𝑘

) + 𝜈𝑘   

 

 We assume the input noise 𝜅 and the output noise 𝜈 have unknown distributions. Instead, the input noise and the 

output noise are represented by sets of 𝑠 redundant measurements in each case. The model exemplifies a system with 

unknown noise characteristics for the sensors, where, there are several readings from the sensors at each time step. 

 
Table 4: RAPF process. 

 

{(𝑥𝑘
𝑖 , 𝜔𝑘

𝑖 )}𝑖=1:𝑚 = 𝑅𝐴𝑃𝐹[{(𝑥𝑘−1
𝑖 , 𝜔𝑘−1

𝑖 )}𝑖=1:𝑚, 𝑦𝑘 , 𝑢𝑘] 

 Draw input samples: 𝑢𝑘
𝑖 ~𝑓𝑢(𝑢𝑘) 

 Generate representatives: 𝜇𝑘
𝑖 = 𝐸(𝑥𝑘|𝑥𝑘−1

𝑖 , 𝑢𝑘
𝑖 ) 

 Find representative weights: 𝜔𝜇𝑘
𝑖 ∝ 𝜔𝑘−1

𝑖 𝑓𝑦(𝑦𝑘|𝜇𝑘
𝑖 , 𝑢𝑘

𝑖 ) 

 Regularize representative density:  𝑓𝑥(𝑥𝑘−1|𝑦𝑘 , 𝑢𝑘) ≈ ∑ 𝜔𝜇𝑘
𝑖 𝐾ℎ(𝑥𝑘−1 − 𝑥𝑘−1

𝑖 )𝑚
𝑖=1 . 

 Draw particles from last step: 𝑥𝑘−1
𝑖 ~𝑓𝑥(𝑥𝑘−1|𝑦𝑘 , 𝑢𝑘) 

 Redraw input samples: 𝑢𝑘
𝑖 ~𝑓𝑢(𝑢𝑘) 

 Propagate priors: 𝑥𝑘
𝑖 ~𝑓𝑥(𝑥𝑘|𝑥𝑘−1

𝑖 , 𝑢𝑘
𝑖 ) 

 Regenerate regularized representatives: 𝜇𝑘
𝑖 = 𝐸(𝑥𝑘|𝑥𝑘−1

𝑖 , 𝑢𝑘
𝑖 ) 

 Update the weights: 𝜔𝑘
𝑖 ∝ 𝑓𝑦(𝑦𝑘|𝑥𝑘

𝑖 , 𝑢𝑘
𝑖 )./𝑓𝑦(𝑦𝑘|𝜇𝑘

𝑖 , 𝑢𝑘
𝑖 ) 

 If ωk
i > w or ωk

i < 1/w, reject the proposal 𝑥𝑘
𝑖 , return to “Draw particles from last step”. 

 Regularize posterior density: 𝑓𝑥(𝑥𝑘|𝑦𝑘 , 𝑢𝑘) ≈ ∑ 𝜔𝑘
𝑖 𝐾ℎ(𝑥𝑘 − 𝑥𝑘

𝑖 )𝑚
𝑖=1 . 

 
4.1. Univariate Non-stationary Growth Model (UNGM) 
 We assume a univariate non-stationary growth model (UNGM) with a single input with actual value of             

𝑢𝐴𝑘
= 8(𝑠𝑖𝑛(1.2 𝑘) +  𝑠𝑖𝑛(𝑘2)) and a single output with the following assumptions: ∆𝑡𝑘~𝒰(0,2), 𝜏𝑘~𝒩(0,5) and 

random measurement samples generated from an arbitrary distribution such that {𝜈𝑘
𝑙 |𝐸(𝜈𝑘

𝑙 ) = 0, 𝑉𝑎𝑟(𝜈𝑘
𝑙 ) = 2}𝑙=1:50 and 

{𝜅𝑘
𝑙 |𝐸(𝜅𝑘

𝑙 ) = 0, 𝑉𝑎𝑟(𝜅𝑘
𝑙 ) = 2}𝑙=1:50. Figure 2 shows the actual and the observed input, the actual state and the observed 

output of the system in 50 time-steps. State estimation has been repeated for 20 times by each of the developed filters using 

100 particles. Figure 3 shows the estimation results for 10 iterations, and table 5 compares the root mean square error of 
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state estimation for the filters. The largest error associates with generic PF and it is unable to track the system state at many 

time steps, as shown in Fig. 3. RAPF has a slightly better performance than APF for this model, while it is computationally 

more costly than APF. Among the developed techniques, RPF shows relatively the best performance with the least 

averaged error over the 50 time steps.   

 

 
Fig. 2: One-dimensional state-space; (a) system input, (b) internal state, and (c) measured output. 

 

 
Fig. 3: State estimation results for PF, APF, RPF and RAPF. 

 
Table 5: Root mean square error for state estimation for UNGM. 

 

Technique Error 

PF 8.88 

APF 7.05 

RPF 5.38 

RAPF 6.48 
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4.2. Bivariate Non-stationary Growth Model (BNGM) 
 To evaluate filtering performance in a higher dimensional state-space, we use complex numbers in the model in Eq. 

24 that creates a bivariate system with dependent variables. In this simulation, the actual input value is assumed to be 

𝑢𝐴𝑘
= 8(1 + 𝑖)(𝑠𝑖𝑛(1.2 𝑘) − 𝑖 𝑠𝑖𝑛(𝑘2)) and for the output: 𝜏𝑘 = 𝜏𝑘𝑅

+ 𝑖 𝜏𝑘𝐼
, where 𝜏𝑘𝑅

, 𝜏𝑘𝐼
~𝒩(0,5). Random 

measurement samples are generated from an arbitrary distribution such that {𝜈𝑘
𝑙 = 𝜈𝑘𝑅

𝑙 + 𝑖 𝜈𝑘𝐼

𝑙 |𝐸(𝜈𝑘
𝑙 ) = 0, 𝑉𝑎𝑟(𝜈𝑘𝑅

𝑙 ) =

𝑉𝑎𝑟(𝜈𝑘𝐼

𝑙 ) = 2}𝑙=1:50 and {𝜅𝑘
𝑙 = 𝜅𝑘𝑅

𝑙 + 𝑖 𝜅𝑘𝐼

𝑙 |𝐸(𝜅𝑘
𝑙 ) = 0, 𝑉𝑎𝑟(𝜅𝑘𝑅

𝑙 ) = 𝑉𝑎𝑟(𝜅𝑘𝐼

𝑙 ) = 2}𝑙=1:50. In Fig. 4 the actual and the 

observed input, the actual state and the observed output of the system are shown in 50 time-steps. Likewise the UNGM, 

state estimation has been repeated for 20 times by each of the developed filters with 100 particles. To compare estimation 

error of the filters, table 6 provides the root mean square errors over the entire estimated states. Unlike UNGM, generic PF 

shows a better performance in comparison with APF. Performance of RAPF filter is almost the same as that of PF, and 

similar to UNGM, the best accuracy is achieved by RPF.   

 
Table 6: Root mean square error for state estimation for BNGM. 

 

Technique Error 

Real part Imag. Part Total 

PF 5.50 4.53 7.13 

APF 6.01 5.64 8.24 

RPF 4.74 3.71 6.02 

RAPF 5.49 4.68 7.21 

 

5. Summary and Conclusion 
 Monte Carlo method has been applied to sequential Bayesian state estimation framework for general class of 

dynamical systems with first order Markovian model. The resulting filter, i.e. PF can estimate the state considering the 

noisy input of the systems. In addition to the generic PF, three other variants of this filter, i.e. APF, RPF and RAPF were 

developed and presented. To verify the performance of the filters in a one-dimensional state-space, an extended form of the 

well-known NGM has been employed for simulating a highly nonlinear system behaviour. To verify the filtering 

performance with a higher dimension, the NGM was utilized such that the input, the state and the output variables were 

taken complex variables. Results of applying the developed filters on the NGM model shows that RPF provides the highest 

accuracy for the simulation model under study, for both one-dimensional and two-dimensional models. It should be noted 

that filtering performance is depended on the individual systems, so that a filter with superior performance in one system 

may show poor results on another system [19].  

 The work shows that PF framework can effectively be extended to more complex dynamical systems where the 

system receives noisy inputs.  

 

 
Fig. 4: Two-dimensional state-space; top: system input, middle: internal state, and bottom: measured output. 
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