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Abstract - A novel adaptive echo cancellation scheme, using an accurate and reliable two-stage identification scheme and an adaptive 

Kalman filter (KF), is proposed. The novel scheme estimates a desired waveform from the received signal which is corrupted by an 

undesired echo and noise. It is assumed that the desired waveform and the echo are uncorrelated with each other, and that the reference 

waveform is highly correlated with the echo.  Further, the reference waveform and echo are related by a rational transfer function and 

are assumed to be measureable. An accurate and reliable model of the echo is identified from the received signal using a proposed 

novel two-stage identification scheme.  This two-stage scheme is used to identify accurately and reliably the model relating the 

reference and actual echo waveforms using least squares and model order reduction. It is implemented in the frequency domain using 

waveform segmentation to ensure efficient computation and model reduction, signal stationarity and real-time system implementation. 

The identified model of the echo is then embodied into the KF which is a minimum-variance estimator that is robust to noise and 

disturbances and has a zero-mean, white noise residual. The performance of the KF is monitored continuously and its gain updated 

adaptively. If the filter's residual fails the whiteness test, the model of the echo is then re-identified and the KF adapted accordingly. 

The proposed scheme was successfully evaluated on simulated and real recorded speech corrupted by noise and echo. This novel 

scheme can be extended to areas such as beamforming 
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Nomenclature 

dy      Desired waveform 

ey      Echo waveform 

ry      Reference waveform 

dy   Received waveform 

( )G z   Transfer function relating ey to ry  

x̂    Estimate of x   

( ) ( ) 1F z G z   

 
 

1. Introduction 
 Echo and noise cancellation finds applications in telecommunication, power line communication for improving the 

quality of speech. An echo may be either acoustic or telephone line hybrid. The acoustic echo is the result of feedback 

between the microphone and the speaker affecting services such as the mobile phone, hearing aid, and teleconferencing. 

The echo may also be the waveform reflected from walls, ceilings etc. Telephone line echoes result from an impedance 

mismatch at telephone exchange hybrids [1]. A similar scheme may be applied to active noise control [2]. 

 The problem of echo cancellation is still a subject of intense research and development by both researchers and 

telecommunication industries. The main problem in echo cancellation is to obtain an accurate and reliable estimate of the 

echo waveform, which is buried in the received waveform, so that the desired waveform may be obtained by subtracting 

the estimated echo from the received waveform. Generally, a Finite Impulse Response (FIR) model is identified by treating 
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the reference waveform as the input and the received waveform as the output. A Least Mean Square (LMS)-type recursive 

scheme is used. Using this model the echo waveform is then estimated.   

 In this work, echo cancellation is based on segmentation of the waveforms, two stage identification and an adaptive 

Kalman filter, which embodies the identified model and estimates the echo waveform. The various stage of the proposed 

scheme are described next. 

 Segmentation: The received and the reference waveforms are segmented. The segment length is chosen to be 

sufficiently small so that the segmented waveforms are stationary. For example a speech waveform may be assumed to be 

stationary over a 20 ms duration, which corresponds to segment length of 320 samples assuming the sampling rate of 16 

kHz. The segmentation reduces the model order, alleviates computational complexity. 

 Two-Stage Identification: A two-stage identification scheme ([3], [4]) is employed to identify the system model 

when the input output data is corrupted by both the noise and the echo, especially when the noise is coloured with 

unknown statistics. First a very high order model is identified so that the order is high enough to capture complete 

dynamics of the signal and noise.  Then in the second stage, a reduced order model is derived from the identified high 

order model from the first stage, using a frequency-weighted least-squares estimator. The two-stage identification is an 

intelligent filter as it were, which automatically extracts the true model the noisy input-output data thereby avoiding a 

human in the loop to provide design information and to locate every noise artefacts in the data. It is as it were a generalized 

phase lock loop, which locks on to the dominant spectral components.  

 Adaptive Kalman Filter: The Kalman filter embodies the identified model of relating the reference and received 

waveforms. It provides an accurate, reliable and robust estimate of the echo waveform, with its residual being zero-mean 

and white if and only if there is no model mismatch-i.e. the actual system model is not different from the identified one. 

The performance of the Kalman filter is continuously monitored in that if its residual fails the the whiteness test, the echo 

model is then re-identified and the Kalman gain accordingly updated. 

 

2. Problem Formulation  
 Echo cancellation concept: A widely popular approach to echo cancellation [5] is represented by a block diagram 

shown in Fig. 1, where dy , ey , ry and y  are the desired, echo , reference and received waveforms. The received waveform 

( y ) is the sum of the desired ( dy ) and echo waveforms ( ey ).The reference ( ry ) and the echo waveforms ( ey ) are related 

by      r ey z F z y z  where  F z is an unknown transfer function. Let  G z be the rational transfer function  that 

relates ey and ry , that is   ( ) / ( )e rG z y z y z , and  Ĝ z  be the echo model identified by treating ry  and y are the 

input and output, respectively, that is  ˆ ( ) / ( )rG z y z y z . Assuming the ideal case where the identified model is 

accurate, and ry  and dy are uncorrelated, i.e.    Ĝ z G z , implying that the estimated echo waveform 

 ˆ ( )e ey z y z and      ˆ 1G z F z  , 

 

ey

y

ry

dy

ˆ
ey ˆ

dy

 



ĜF
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Fig. 1: Block diagram representation of echo cancellation scheme. 
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3. Echo Cancellation: The Conventional and the Proposed Approaches 
 There is a lack of an overarching theory that will pull all of the seemingly different echo cancellation techniques into 

a unified theory that will make all such available theories mere special cases. Echo cancellation is a system identification 

problem as can be deduced from the block diagram shown in Fig. 2 relating  y  , ey , dy  and ry  where only y  and ry  are 

measured, and a map relating ry and ey  is assumed to be some unknown dynamic model.   

 

y

dyry
ey

G




ry

 
Fig. 2: Block diagram representation relating waveforms and the estimates. 

 

 Various echo cancellation schemes have been proposed depending upon the choice of the structure of the dynamic 

model G .  

 Conventional approach: The widely-used scheme is based on assuming that G is a moving average (MA) model: 
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 where  k is the equation error. 

 Proposed approach:  The proposed scheme assumes a more general auto-regressive and moving average (ARMA) 

model given by: 
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 Substituting for      e dy k y k y k   yields: 

 

   
1 1
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         (3) 

 

 where  ia with the leading coefficient 0 1a  are the coefficients of the auto-regressive (AR) part of the ARMA 

model;  ib  are the MA coefficients of the moving average (MA) part of the ARMA model; and bn and an  are 

respectively the numerator and the denominator orders, and  k  is the equation error resulting from the combined effects 

of measurement noise,  disturbances and modelling errors.    

 Assuming the desired speech waveform dy    to be stationary over a frame (of approximately 20 ms.), a linear 

prediction coding (LPC) all-pole model becomes:  
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 where  dia are LPC coefficients,  du k is the excitation, which is assumed to be a zero-mean white noise process. 

The choice of the white noise excitation to cover both the voiced and the unvoiced speech gives an acceptable accuracy [6].  

Kalman Filter-based identification 

 Let  , ,e e eA B C  be the state-space model relating the input  ry k and the output  y k given by 

Error! Reference source not found.;  ,d dA C be the signal model of  dy k given by 

Error! Reference source not found.. An augmented state space-model is derived, as follows, by appending the 2 state-

space models  , ,e e eA B C and  ,d dA C to each other: 

 

 ( 1) ( ) ( )

( ) ( ) ( )

x k Ax k Br k Ew k

y k Cx k v k

   

 
 (5) 
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 ;  e dC C C  ; ( )x k  is the state,    ( )
T

r dr k y k u k     is the 

input, ( )w k  and ( )v k  are the disturbances and the measurement noise. The echo and the desired waveform are:  

 

( ) ( ) ( )

( ) ( ) ( )

e e e

d D d

y k C x k v k

y k C x k v k

 

 
 (6) 

 

 where ( )ev k and ( )dv k satisfy ( ) ( ) ( )e dv k v k v k   

 Assumptions: 

 It is assumed that  dy k   is uncorrelated with  ey k - that is there is no spectral overlap between these 2  

waveforms.  

 The reference waveform  ry k is highly correlated with  ey k and least correlated with  dy k , i.e.  the spectra 

of  ry k and  ey k are coincident while there is no (or as small as possible) spectral overlap between 

 ry k and  dy k . 

 The disturbance ( )w k  and ( )v k are both assumed to be zero-mean white-noise processes 

 

Derivation of the residual of the Kalman filter of the system 

 The Kalman filter model of the system Error! Reference source not found. becomes ([7], [8] and [9]): 

  

    ˆ ˆ ˆ( 1) ( ) ( )

ˆ ˆ ˆ ˆ ˆ ˆ( ) ( ); ( ) ( ); ( ) ( )e e d d

x k Ax k Br k K y k Cx k

y k Cx k y k C x k y k C x k

    

  
 (7) 

 

 where ˆ( )x k , ˆ( )y k ,  ˆ ( )ey k and ˆ ( )dy k  are respectively the estimate of ( )x k ,  y k ,  ey k and  dy k ; K  is the 

Kalman gain. 

 An expression for the residual of the Kalman filter (Doraiswami and Cheded, 2012) is given by: 

 

0 0

( ) ( )
( ) ( ) ( )

( ) ( )

D z N z
e z y z r z

F z F z
   (8) 
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 where ( )N z  and ( )D z  are the numerator and denominator of the system transfer function relating  y z , 

and  ry z , and  0 ( )F z zI A KC    is the Kalman polynomial.    

Proposed Reliable and Accurate System Identification:  

 The key 2 properties the Kalman filter, namely, that its residual ( )e k  is  a) zero-mean, white-noise process and b) 

has minimum variance compared to that of any other estimator,  are exploited in developing the proposed identification. 

The coefficients of ( )N z  and ( )D z  of the system model are estimated from minimizing the sum of the squares of the 

residual, i.e.: 

 

2

,
1

min ( )
N

N D
k

e k


 
 
 
  (9) 

 

 In order to avoid dealing with a nonlinear relation governing residual and the coefficients of the Kalman polynomial 

0 ( )F z  the rational polynomials
0

( )

( )

D z

F z
and 

0

( )

( )

N z

F z
 are approximated by high-order polynomials [4] and the coefficients of  

( )N z  and ( )D z  are estimated using the proposed two-stage identification scheme.  Using these estimated coefficients, the 

state-space model Kalman filter  , ,A B C  is then obtained.  

 Bayesian hypotheses testing:  A Bayesian hypothesis testing scheme is employed to verify whether the performance 

of the Kalman filter is normal. If it is not normal, the echo model is re-identified and the Kalman gain updated [10]  

Salient Features of the Proposed Scheme 

 The estimation of the echo waveform is reliable and highly accurate in the face of the noise and the disturbances 

corrupting received and the reference waveforms.  

 The quality of the estimated speech is better than that obtained with conventional techniques 

 The proposed scheme is successfully evaluated on a number of simulated and actual acoustic waveforms 

 In order to reduce the computational burden without sacrificing the accuracy, the following scheme is employed: 

o A complex task involving large computational burden and high memory requirement is divided into a number 

of smaller tasks requiring lesser computations and memory. The waveforms, which are typically large, are 

segmented into a number of smaller data samples.  

o identification. The segment length is chosent to be a power of 2 so as to use the  efficient fast fourier 

transform of  waveforms and subsequently the auto and cross correlations     

o The Bayesian testing scheme is used to monitor the performance of the proposed scheme. Only if it is found 

unaceeptable is the model is re-identified. Otherwise, the burdernsome task of identification is avoided.  

 

4. Evaluation On Audio Data 
 The proposed scheme is evaluated on audio recordings of a speech of an individual that is corrupted by some 

background speech. Recordings were provided by [11] . 
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Fig. 3: Audio waveforms from persons A and B. 
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 Figure 3 shows audio signals, desired waveform dy from person A, echo waveform ey from person B, received 

waveform e dy y y   captured by the microphone 1 and played on the speaker, and reference waveform ry from 

microphone 2.  

 The audio signals were a) of duration 4.8 sec., b) digitized at a sampling rate 16000sf  , the total number of 

samples  76800N  . To reduce the computational burden, and to ensure stationary, the waveforms were segmented. The 

number of segments was 300, and the length of each segment 256 (a power of 2 so that fast Fourier transform could 

efficiently be computed), the duration of the segment is 16ms.  

 Figure 4 shows the segmented waveforms of the echo and the desired. The subfigures A and B show respectively the 

echo ex and its estimate ˆ
ex ; the desired waveform ˆ

dx and its estimate ˆ
dx . Figure 5 shows the waveforms of the echo and the 

desired. The subfigures A and B show respectively the echo ey and the desired waveforms ˆ
dy . 
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Fig. 4: Segmented waveforms:the echo and the desired and 

their estimates. 

1 2 3 4 5 6 7

x 10
4

-0.04

-0.02

0

0.02

0.04

A:estimate of the desired waveform 

0 1 2 3 4 5 6 7

x 10
4

-0.04

-0.02

0

0.02

0.04

0.06

0.08

B:estimate of the echo

 
Fig. 5: The echo and the desired waveforms. 

 

 

 Comment: It can be deduced from Fig. 4 that the estimates of the echo and the desired waveforms track 

 

5. Conclusions 
 Direct identification of the Kalman filter model from the received noisy waveform and the reference echo waveform 

distingishes the proposed approach from other published ones in that it completely avoids the problem of computing the 

Kalman filter gains when both the noise and disturbances are unknown, which represents real and practical scenarios. The 

evaluation on both simulated and real recorded waveforms have been successful and are very encouraging to extend this 

work further.    
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