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Abstract – This paper presents a decentralized control strategy for mobile manipulator systems. First, the whole system of mobile 
manipulator is divided into two interconnected subsystems: nonholonomic mobile platform subsystem and holonomic manipulator 

subsystem. Second, a kinematic and dynamic controllers are developed for mobile platform subsystem. The kinematic control provides 

the desired velocity that will be used to develop the dynamic controller that ensures the tracking of the desired trajectories of the mobile 

platform subsystem. Third, the control law of the manipulator subsystem is developed based on the desired and real values of the 

manipulator subsystem as well as the desired velocity of the platform subsystem. Lyapunov approach is used to prove the stability of 

the tracking error of both subsystems. Simulation results on 2 DOF manipulator mounted on a mobile platform are given to 

demonstrate the feasibility and effectiveness of the proposed approach.  
 
Keywords: Mobile manipulator, trajectory tracking, decentralized control, stability. 

 

 

1. Introduction 
 The tracking control still a challenging problem for the mobile manipulator due to the complexity and strong 

coupled dynamics of the mobile platform and the robotic arm. Many control strategies have been developed in recent years 
to track a desired trajectories of mobile manipulators. Two categories of the control schemes are usually used for this kind 

of systems. First, the mobile manipulator is viewed as one multivariable system where one control law is used for the 

whole system. In this case, many control strategies have been applied to mobile manipulators. The position control 
problem of mobile manipulators operating in the task space with state constraints was proposed in [1]. A visual dynamic 

control based on passivity is developed in [2] to solve the target tracking problem of mobile manipulators. A planning and 

control algorithm for coordinating the motion of a mobile manipulator is presented in [3]. The authors presented a control 
algorithm so that the manipulator was always positioned at preferred configuration measured by its manipulability. In order 

to simplify the nonlinear model and to design a controller, output feedback linearization was used. Model-based PD-like 

controller was also used in [4] to eliminate the tracking errors of the mobile manipulator. PD and neural network 

controllers for the overall mobile manipulator were proposed in [5].  
 All these techniques use the mobile manipulator as one multivariable system and the overall dynamic system 

contains (p+m) degrees of freedom (DOF) where p and m are the number of DOF of the mobile platform and the 

manipulator, respectively. This is may after all be acceptable as a good choice when (p+m) is small. However, the 
complexity of the computations increases geometrically with (p+m) [6] . To overcome this problem, a second category of 

the control scheme which consists of dividing the dynamics of the mobile manipulator into two interconnected subsystems: 

mobile platform and manipulator. Many control strategies have been proposed for the mobile manipulators using this 
configuration. Decentralized robust controllers for mobile manipulators were proposed in [7] to track a desired trajectory in 

the workspace. The dynamical models of the two subsystems included the reaction forces. However, the angular motion 

was excluded and only translation of the mobile platform was considered. In [8], two interaction controllers were 

developed. The first control law consists of a robust adaptive controller for the manipulator subsystem while the second 
one is an input-output linearizing controller for the mobile platform subsystem. The control strategy was employed to 
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minimize the adverse effect of wheel slip on track performances. A kinematic controller of a mobile manipulator with 

uncertainties was proposed in [9]. The dynamic surface control technique was applied in [10] for mobile manipulators.  
 This paper takes the advantage of the decentralized configuration which uses the mobile manipulator as two 

interconnected subsystems: the mobile platform subsystem and the manipulator subsystem. The considered system is a 

two-link manipulator mounted on a mobile platform. Since this desired velocity cannot be generated directly by the 

motors, a control torques are designed for the mobile platform based on the dynamic model. Next, a control law for the 
manipulator subsystem is developed based on Lyapunov approach. Simulation results show effectiveness of the proposed 

decentralized control strategy for controlling the mobile manipulator. 

 The rest of this paper is organized as follows. In Section 2, system description and modelling of mobile manipulators 
are addressed. The control law for the mobile platform subsystem is presented in section 3. Section 4 presents the control 

law and the stability of the manipulator subsystem. The simulation results are given in Section 5, and the conclusion is 

presented in Section 6. 
 

2. System Description and Modelling  
 The mobile manipulator considered is composed of a wheeled mobile platform and a two-link manipulator as shown 
in Fig.1. The mobile platform moves by driving two independent wheels. 

 

 
Fig. 1. 2DOF Mobile manipulator. 

 

 In addition, the manipulator is generally considered to be a holonomic system, while the mobile platform is subject 

to nonholonomic constraint and hence, the mathematical model of mobile manipulator can be expressed as [11]: 
 

𝑀(𝑞)�̈� + 𝐶(𝑞, �̇�)�̇� + 𝐺(𝑞) = 𝐵(𝑞)𝜏 − 𝐴𝑇(𝑞)𝜆 (1) 

 
 The nonholonomic is given as follows: 

 

𝐴(𝑞)�̇� = 0 (2) 

 

 where 𝑀(𝑞) ∈ ℛ𝑛×𝑛  is an inertia and mass matrix, 𝐶(𝑞, �̇�)�̇� is the Coriolis vector, 𝐺(𝑞) ∈ ℛ𝑛 is a vector of gravity 

terms. 𝑞 ∈ ℛ𝑛 denotes the vector of the generalized positions in the joint space, �̇� and �̈� are the velocity and acceleration 

vectors, respectively. Let 𝑞 = [𝑞𝑣
𝑇 𝑞𝑟

𝑇]𝑇, where 𝑞𝑣 ∈ ℛ𝑝 represents the position and orientation of the mobile platform 

subsystem, 𝑞𝑟 ∈ ℛ𝑚 represents the link position of the manipulator subsystem, and 𝑛 = 𝑝 + 𝑚 . 𝐴(𝑞) ∈ ℛ𝑟×𝑛 is the 

constraint matrix, 𝜆 ∈ ℛ𝑟  is the constraint force. 𝐵(𝑞) ∈ ℛ𝑝×(𝑝−𝑟) is the input transformation matrix. 𝜏 ∈ ℛ𝑛−𝑟 is the 
input torque. 

 Since the nonholonomic characteristics of the mobile manipulator is caused by the movement of the mobile 
platform, Equation (2) can be simplified to: 

 

𝐴𝑣(𝑞𝑣)�̇�𝑣 = 0 (3) 

 

 where 𝐴𝑣(𝑞𝑣) ∈ ℛ𝑟×𝑝  is the constraint matrix of mobile platform. 
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 The dynamic model of the mobile manipulator given in (1) can take the following form: 

 

[
𝑀11 𝑀12

𝑀21 𝑀22
] [

�̈�𝑣

�̈�𝑟
] + [

𝐶11 𝐶12

𝐶21 𝐶22
] [

�̇�𝑣

�̇�𝑟
] + [

𝐺1

𝐺2
] = [

𝐵𝑣(𝑞𝑣)𝜏𝑣

𝜏𝑟
] − [𝐴𝑣

𝑇(𝑞𝑣)𝜆
0

] (4) 

 

 where 𝜏𝑣 ∈ ℛ𝑝−𝑟  is the control torque of mobile platform, 𝜏𝑟 ∈ ℛ𝑚 is the control torque of manipulator, 𝑀11 and 

𝑀22 represent the inertia matrices of mobile platform and manipulator respectively, 𝑀12�̈�𝑟 and 𝑀21�̈�𝑣 represent the 

interaction inertia between the manipulator and mobile platform, 𝐶12�̇�𝑟 and 𝐶21�̇�𝑣  also represent the interaction centripetal 
and Coriolis forces between two subsystems. The model has the following properties that will be used in the stability 

analysis of the developed control law: 

 P1. The inertia-mass matrix 𝑀(𝑞) is symmetric positive definite.  

 P2: The inertia-mass matrix 𝑀(𝑞) and the Coriolis matrix 𝐶(𝑞, �̇�) satisfy the following skew-symmetric property: 

 

𝑋𝑇(�̇�(𝑞, �̇�) − 2𝐶(𝑞, �̇�))𝑋 = 0    ∀ 𝑋 ∈ ℛ𝑛 (5) 

 

3. Control of Mobile Platform Subsystem 
 In this section, the control torque based on dynamic model is developed for mobile platform subsystem. First, the 

velocity control based on kinematic model is designed to develop the desired velocity. Next, the torques for mobile 

platform are developed using this desired velocity.  
 The dynamic equation of mobile platform subsystem is derived from (4) as follows: 

 

𝑀11�̈�𝑣 + 𝑀12�̈�𝑟 + 𝐶11�̇�𝑣 + 𝐶12�̇�𝑟 + 𝐺1 = 𝐵𝑣(𝑞𝑣)𝜏𝑣 − 𝐴𝑣
𝑇(𝑞𝑣)𝜆 (6) 

 

 As mentioned 𝐴𝑣 is the constrain matrix. When selecting a full rank matrix 𝑆(𝑞𝑣) ∈ ℛ𝑝×(𝑝−𝑟) to be a basis of null 

space 𝐴𝑣(𝑞𝑣), the constraint equation will be: 
 

𝑆𝑇(𝑞𝑣)𝐴𝑣
𝑇(𝑞𝑣) = 0 (7) 

 

 There exists an auxiliary input vector ∈ ℛ𝑝−𝑟  , and satisfying 

 

�̇�𝑣 = 𝑆(𝑞𝑣)𝑉(𝑡) (8) 

 

 where �̇�𝑣 = [�̇� �̇� ∅̇]𝑇 and 𝑉 = [𝑣 𝑤]𝑇 , 𝑣 and 𝑤 are the linear and angular velocity.  

 When multiplying Eq. (6) by 𝑆𝑇 , the constraint force term 𝐴𝑣
𝑇(𝑞𝑣)𝜆 can be eliminated. So, we have: 

 

𝑆𝑇𝑀11�̈�𝑣 + 𝑆𝑇𝑀12�̈�𝑟 + 𝑆𝑇𝐶11�̇�𝑣 + 𝑆𝑇𝐶12�̇�𝑟 + 𝑆𝑇𝐺1 = 𝑆𝑇𝐵𝑣𝜏𝑣 (9) 

 
 Introducing (8), the dynamic equation (9) becomes: 

 

�̅�11�̇� + �̅�11𝑉 + 𝑓1 = �̅�𝑣 (10) 

 

 where �̅�11 = 𝑆𝑇𝑀11𝑆; �̅�11 = 𝑆𝑇𝑀11�̇� + 𝑆𝑇𝐶11𝑆 and �̅�𝑣 = 𝑆𝑇𝐵𝑣𝜏𝑣  
 The dynamic coupling term that is caused by the manipulator and the gravity are given as follows: 

 

𝑓1 = 𝑆𝑇(𝑀12�̈�𝑟 + 𝐶12�̇�𝑟 + 𝐺1) (11) 

 
 From the modified model, we present the following properties that will be used in the stability analysis: 

 P3. The inertia-mass matrices �̅�11and the Coriolis matrices �̅�11 satisfy the following skew-symmetric property: 
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𝑋𝑇(�̇̅�11 − 2�̅�11)𝑋 = 0    ∀ 𝑋 ∈ ℛ𝑝 (12) 

 

 The kinematic model of two-wheel driven mobile platform can be expressed as [7]: 

 

�̇�𝑣 = [

�̇�
�̇�

�̇�

] = [
𝑐𝑜𝑠𝜙 −𝑑𝑠𝑖𝑛𝜙
𝑠𝑖𝑛𝜙 𝑑𝑐𝑜𝑠𝜙

0 1

] [
𝑣
𝜔

] (13) 

 

 where (𝑥, 𝑦) is the coordinate of point C in the coordinate system XOY (Figure 1); ∅ is the direction angle when the 

mobile platform rotates around the X-axis anticlockwise; d is the distance between the point C of mobile platform and the 

axis mid-points G of two driven wheels. 𝑣 and ω represent the linear and angular velocities of mobile platform, 

respectively. 

Note that the objective is to track a reference trajectory by the mobile platform. Then, the desired position is 𝑞𝑣𝑑 =
[𝑥𝑑 𝑦𝑑 𝜙𝑑] and the desired velocity is 𝑉𝑑 = [𝑣𝑑 𝜔𝑑]𝑇 . Therefore, the tracking errors is obtained using the Kanayama 
transformation [12] as follows: 

 

[

�̃�
�̃�

�̃�
] = [

𝑐𝑜𝑠𝜙 𝑠𝑖𝑛𝜙 0
−𝑠𝑖𝑛𝜙 𝑐𝑜𝑠𝜙 0

0 0 1

] [

𝑥𝑑 − 𝑥
𝑦𝑑 − 𝑦
𝜙𝑑 − 𝜙

] (14) 

 
Proposition 1: The error dynamics (14) are asymptotically stable when using the following velocity control law: 

 

𝑉(𝑡) = [
𝑣
𝜔

] = [
𝑘𝑥�̃� + 𝑣𝑑𝑐𝑜𝑠�̃�

𝜔𝑑 + 𝑘𝑦𝑣𝑑�̃� + 𝑘𝜙𝑣𝑑𝑠𝑖𝑛�̃�
] (15) 

 

 where 𝑘𝑥 , 𝑘𝑦  𝑎𝑛𝑑 𝑘𝜙; are positive controller gains. 

 To prove proposition 2, we consider the following positive Lyapunov function: 

 

𝑊 =
1

2
�̃�2 +

1

2
�̃�2 +

1 − 𝑐𝑜𝑠�̃�

𝑘𝑦
 (16) 

 
 It has been proven that the kinematic system of mobile robot, which consisted of Eq. (13), and (15), is closed loop 

stable [7]. 

 The above velocity control law Eq. (15) is only designed specially based on the kinematic model. However, the 
motors generate control torque and cannot generate directly the velocity control. Therefore, it is necessary to design the 

torques for mobile platform based on the dynamic model and then the control torque will result in an actual velocity. Using 

the actual and desired velocities, the velocity tracking errors can be expressed as: 
 

𝑧 = 𝑉 − 𝑉𝑑 (17) 

 

 where 𝑉 and 𝑉𝑑 are the actual and desired velocity of mobile platform, respectively. From the dynamic model (10), 

the term 𝑓1 existing in (11) contains the acceleration �̈�𝑟. In order to avoid this acceleration we define the sliding surface of 

the manipulator subsystem as follows: 

 

𝑟 = �̇� + 𝐾𝑒 (18) 

 

 where 𝑒 = 𝑞𝑟𝑑 − 𝑞𝑟  is the position error. Thus, the generalized coordinate �̇�𝑟  and �̈�𝑟 can be written as follows: 
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�̇�𝑟 = �̇�𝑟𝑑 − �̇� = �̇�𝑟𝑑 − 𝑟 + 𝐾𝑒 ; �̈�𝑟 = �̈�𝑟𝑑 − �̈� = �̈�𝑟𝑑 − �̇� + 𝐾�̇� (19) 

 Using equation (17), the dynamic equation (10) is equivalent to the following equation:  
 

�̅�11�̇� + �̅�11𝑧 + �̅�11�̇�𝑑 + �̅�11𝑉𝑑 + 𝑓1 = �̅�𝑣 (20) 

 

 Proposition 2: The resulting error dynamics is asymptotically stable when using the following control law: 
 

�̅�𝑣 = �̅�11�̇�𝑑 + �̅�11𝑉𝑑 + 𝑓1 − 𝐾𝑑𝑣𝑧 (21) 

 

 where 𝐾𝑑𝑣 is positive gain 

 To prove the stability, let find the error dynamics by inserting the platform controller (21) in the dynamic equation 

(20). So, the resulting error dynamics can be expressed as follows: 

 

�̅�11�̇� + �̅�11𝑧 + 𝐾𝑑𝑣𝑧 = 0 (22) 

 

 To prove the stability of the error dynamics, we consider the following positive Lyapunov function: 

 

𝑉1 =
1

2
𝑧𝑇�̅�11𝑧 (23) 

 

 The time derivative is : �̇�1 = 𝑧𝑇�̅�11�̇� +
1

2
𝑧𝑇�̇̅�11𝑧 

 Using the error dynamics (22), we get:  �̇�1 = 𝑧𝑇[−�̅�11𝑧 − 𝐾𝑑𝑣𝑧] +
1

2
𝑧𝑇�̇̅�11𝑧 

 Using the property (12),�̇�1 becomes: 
 

�̇�1 = −𝑧𝑇𝐾𝑑𝑣𝑧 (24) 

 

 Since 𝐾𝑑𝑣 is positive definite matrix, the time derivative �̇�1 is negative. Using LaSalle theorem [13], the error 
dynamics are asymptotically stable. 

 

4. Control of Manipulator Subsystem 
 This section presents the control strategy for the manipulator subsystem. From Eq. (4), the dynamic equation of 

manipulator subsystem is expressed as: 

 

𝑀21�̈�𝑣 + 𝑀22�̈�𝑟 + 𝐶21�̇�𝑣 + 𝐶22�̇�𝑟 + 𝐺2 = 𝜏𝑟 (25) 

 

 This dynamic equation contains the acceleration term �̈�𝑟. To avoid this problem, the equation (19) can be used. The 
dynamic equation can be rearranged as follows: 

 

 𝑀21�̈�𝑣 + 𝑀22(�̈�𝑟𝑑 − �̇� + 𝐾�̇�) + 𝐶21�̇�𝑣 + 𝐶22(�̇�𝑟𝑑 − 𝑟 + 𝐾𝑒 ) + 𝐺2 = 𝜏𝑟  

 −𝑀22�̇� + 𝑀21�̈�𝑣 + 𝑀22𝐾�̇� + 𝐶21�̇�𝑣 − 𝐶22(𝑟 − 𝐾𝑒) + 𝐶22�̇�𝑟𝑑  + 𝑀22�̈�𝑟𝑑 + 𝐺2 = 𝜏𝑟  

 −𝑀22�̇� + 𝑀21�̈�𝑣 + 𝑀22𝐾(𝑟 − 𝐾𝑒) + 𝐶21 �̇�𝑣 − 𝐶22(𝑟 − 𝐾𝑒) + 𝐶22 �̇�𝑟𝑑  + 𝑀22�̈�𝑟𝑑 + 𝐺2 = 𝜏𝑟 

 −𝑀22�̇� + 𝑀21�̈�𝑣 + 𝐶21 �̇�𝑣 + (𝑀22𝐾 − 𝐶22)(𝑟 − 𝐾𝑒) + 𝐶22�̇�𝑟𝑑  + 𝑀22�̈�𝑟𝑑 + 𝐺2 = 𝜏𝑟  
  

 Thus, the equation (25) is equivalent to the following expression:  
 

−𝑀22�̇� + (𝑀22𝐾 − 𝐶22)(𝑟 − 𝐾𝑒) + 𝑓2 = 𝜏𝑟  (26) 

 
 where 
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𝑓2 = 𝑀21�̈�𝑣 + 𝐶21�̇�𝑣 + 𝐶22�̇�𝑟𝑑  + 𝑀22�̈�𝑟𝑑 + 𝐺2 (27) 

 Using the equations (8),  𝑓2 can be written as: 
  

 𝑓2 = 𝑀21(𝑆�̇� + �̇�𝑉) + 𝐶21𝑆𝑉 + 𝐶22�̇�𝑟𝑑  + 𝑀22�̈�𝑟𝑑 + 𝐺2 

      = 𝑀21𝑆�̇� + (𝑀21�̇� + 𝐶21𝑆)𝑉 + 𝐶22�̇�𝑟𝑑  + 𝑀22�̈�𝑟𝑑 + 𝐺2 

 

 Let propose now the following control law for the manipulator subsystem: 

 

𝜏𝑟 = 𝑀22𝐾𝑟 − (𝐶22 − 𝑀22𝐾)𝐾𝑒 + 𝑓2 + 𝐾𝑑𝑟𝑟 (28) 

 

 The error dynamics can be determined by inserting the control law (28) in the dynamic equation of (26) as follows:  

 

−𝑀22�̇� + (𝑀22𝐾 − 𝐶22)(𝑟 − 𝐾𝑒) + 𝑓2 = 𝑀22𝐾𝑟 − (𝐶22 − 𝑀22𝐾)𝐾𝑒 + 𝑓2 + 𝐾𝑑𝑟𝑟 (29) 

 

 After simplification, the error dynamics can be expressed as: 
 

𝑀22�̇� + 𝐶22𝑟 + 𝐾𝑑𝑟𝑟 = 0 (30) 

 

 Proposition 3: using the control law (28), the error dynamics (30) of the manipulator subsystem are asymptotically 
stable when using the following positive Lyapunov function:  

 

𝑉2 =
1

2
𝑟𝑇𝑀22𝑟 (31) 

 

 Proof: The time derivative of 𝑉2 is : �̇�2 = 𝑟𝑇𝑀22�̇� +
1

2
𝑟𝑇�̇�22𝑟 

 Using the error dynamics (30), we get:  �̇�2 = 𝑟𝑇[−𝐶22𝑟 − 𝐾𝑑𝑟𝑟] +
1

2
𝑟𝑇�̇�22𝑟 

 Using the property (5),�̇�2 becomes: 
 

�̇�2 = −𝑟𝑇𝐾𝑑𝑟𝑟 (32) 

 

 Since 𝐾𝑑𝑟  is positive definite matrix, the time derivation �̇�2 is negative. Using LaSalle theorem [13], the error 
dynamics is asymptotically stable. 

 

5. Simulation results 
 The mobile manipulator which is shown in Fig. 1 is utilized to demonstrate the effectiveness of the proposed 

decentralized control strategy. The nonholonomic constraint is given as 

 

�̇�𝑐𝑐𝑜𝑠∅ − �̇�𝑐𝑠𝑖𝑛∅ − 𝑑∅̇ = 0 (33) 

 

 Then, the constraint matrix of nonholonomic system corresponding to Eq. (3) can be obtained as 
 

𝐴𝑣(𝑞𝑣) = [−𝑠𝑖𝑛∅ 𝑐𝑜𝑠∅ −𝑑] 
 

 The matrix 𝑆(𝑞𝑣) as a basis in null space 𝐴𝑣(𝑞𝑣) and the corresponding parameters of the dynamic model of mobile 
manipulator, which is shown in Eq. (4), are given as:  
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𝑆(𝑞𝑣) =

[
 
 
 
 
𝑟

2
𝑐𝑜𝑠∅ +

𝑟

𝑅
𝑑𝑠𝑖𝑛∅

𝑟

2
𝑐𝑜𝑠∅ −

𝑟

𝑅
𝑑𝑠𝑖𝑛∅

𝑟

2
𝑠𝑖𝑛∅ −

𝑟

𝑅
𝑑𝑐𝑜𝑠∅

𝑟

2
𝑠𝑖𝑛∅ +

𝑟

𝑅
𝑑𝑐𝑜𝑠∅

−
𝑟

𝑅

𝑟

𝑅 ]
 
 
 
 

; 𝐵11 =
1

𝑟
[
𝑐𝑜𝑠∅ 𝑐𝑜𝑠∅
𝑠𝑖𝑛∅ 𝑠𝑖𝑛∅
−𝑅 𝑅

] 

𝑀11 =

[
 
 
 𝑚𝑜12 +

2𝑙𝑤𝑠𝑖𝑛2∅

𝑟2 −
2𝑙𝑤𝑠𝑖𝑛∅𝑐𝑜𝑠∅

𝑟2 −2𝑚12𝑑𝑠𝑖𝑛∅

−
2𝑙𝑤𝑠𝑖𝑛∅𝑐𝑜𝑠∅

𝑟2 𝑚𝑜12 +
2𝑙𝑤𝑐𝑜𝑠2∅

𝑟2 2𝑚12𝑑𝑐𝑜𝑠∅

−2𝑚12𝑑𝑠𝑖𝑛∅ 2𝑚12𝑑𝑐𝑜𝑠∅ 𝑚𝑎𝑡33 ]
 
 
 

; 𝐶11 =

[
 
 
 
 

2𝑙𝑤∅̇𝑠𝑖𝑛∅𝑐𝑜𝑠∅

𝑟2

𝑙𝑤∅̇𝑐𝑜𝑠2∅

𝑟2 −𝑚12𝑑∅̇𝑐𝑜𝑠∅

𝑙𝑤∅̇𝑐𝑜𝑠2∅

𝑟2 −
2𝑙𝑤∅̇𝑠𝑖𝑛∅𝑐𝑜𝑠∅

𝑟2 −𝑚12𝑑∅̇𝑠𝑖𝑛∅

−𝑚12𝑑∅̇𝑐𝑜𝑠∅ −𝑚12𝑑∅̇𝑠𝑖𝑛∅ 0 ]
 
 
 
 

 

𝑀12 = 𝑀21
𝑇 = [

0 0 𝐼12

0 0 0
]; 𝑀22 = [

𝐼12 0
0 𝐼2

] ; 𝐹1 = [
0
0
0
]; ;𝐶12 = 𝐶21

𝑇 = [
0 0 0
0 0 0

]; 𝐶22 = [
0 0
0 0

]; 𝐹1 = [
0

𝑚2𝑔𝑙2
𝑠𝑖𝑛𝜃2

]; 

 

 Where 𝑚𝑜12 = 𝑚0 + 𝑚1 + 𝑚2; 𝑚12 = 𝑚1 + 𝑚2; 𝑚𝑎𝑡33 = 𝐼𝑜12 + 𝑚12𝑑
2 + 2𝐼𝑤𝑅2 ∕ 𝑟2; 𝐼𝑜12 = 𝐼0 + 𝐼1 + 𝐼2; 

𝐼12 = 𝐼1 + 𝐼2𝑚0 is the mass of mobile platform, r is drive wheel radius of mobile platform; 2R is the distance between two 

drive wheels; 𝐼𝑤  is the moment inertia of platform which rotates around central axis, 𝐼0 is the moment inertia. m1 

and m2 represent the mass of link1 and link2 of manipulator respectively, I1 and I2 are the moment inertia of link1 and 

link 2 of manipulator respectively. The mobile manipulator parameters used for the simulation are shown in Table1. For 

the mobile platform subsystem, consider the kinematic controller, the reference trajectory is chosen as 

𝑞𝑣𝑑 = [𝑥𝑟 𝑦𝑟 ∅𝑟]
𝑇 then �̇�𝑟 = 𝑉𝑟𝑐𝑜𝑠∅𝑟; �̇�𝑟 = 𝑉𝑟𝑠𝑖𝑛∅𝑟 , ∅̇𝑟 = 𝜔𝑟 . where the linear velocity is chosen as 𝑉𝑟 = 0.5𝑚 ∕ 𝑠  

and the reference angular velocity is chosen as 𝜔𝑟 = 0 𝑟𝑎𝑑 ∕ 𝑠. The reference initial position of mobile platform is 

𝑞𝑣𝑑(0) = [2 2 45𝑜]𝑇, while the actual initial position is 𝑞𝑣(0) = [1 1 0𝑜]𝑇. The kinematic controller is shown as 

Eq. (15), where the gains are set to be 𝑘𝑥 = 5; 𝑘𝑦 = 8;  𝑎𝑛𝑑 𝑘𝜙 = 10.  The dynamic controller gains for the platform 

subsystem are 𝑘𝑑𝑣 = 𝑑𝑖𝑎𝑔[20,20]. For the manipulator subsystem, the controller’s gains are 𝑘𝑑𝑟 = 𝑑𝑖𝑎𝑔[15,15].  
 

Table 1: Simulation parameters. 

 

Parameters values 

𝑚0 (kg) 40 

𝑚1 (kg) 6 

𝑚2 (kg) 4 

𝑙1 (m) 1.1 

𝑙2 (m) 0.8 

𝑟 (m) 0.1 

2R (m) 0.3 

d(m) 0.3 

𝐼𝑤  (kgm
2
) 2 

𝐼0 (kgm
2
) 2 

𝐼1 (kgm
2
) 1 

𝐼2 (kgm
2
) 1 

 

 The simulation parameters are given in Table 1. The simulation results are shown in figure 2, 3 and 4.  
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Fig. 2. Mobile platform subsystem. (a) Tracking trajectory of x-position, (b) Tracking trajectory of y-position (c) Tracking trajectory of 

𝜙-direction, (d) Tracking error of x-position, (e) Tracking error of y-position (f) Tracking error of 𝜙-direction. 
 

 
Fig. 3. Tracking trajectory of the platform in (X, Y) plan. 
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Fig. 4. Manipulator subsystem. (a) Tracking trajectory of link 1 (b) Tracking trajectory of link 2 (c) Tracking error of link 1, (d) 

Tracking error of link 2. 

 

 For the mobile platform subsystem, a good tracking is shown in figure 2. The desired and real values of x, y and ∅ 

are presented in figure 2 (a-b-c). This good tracking is conformed by figure 2 (d-e-f) which show the associated tracking 
errors. Figure 3 shows a good tracking on x–y plane of mobile platform. Despite the different initial conditions, the 

tracking errors converge to zero. For the manipulator subsystem, the tracking trajectories of the first and second link are 

shown in Figure 4 (a-b) and the corresponding tracking errors are given in Figure 4 (c-d). These figures show a good 
tracking of the desired trajectories in the joint space of the manipulator.  

Finally, from these simulation results, despite the different starting point of the desired and the real values, the steady state 

errors are very small and converge to zero for both subsystems which show an effective control performance on mobile 

manipulators. 
 

6. Conclusion 
 This paper presents a decentralized controller for mobile manipulator where it is divided into non-holonomic mobile 

platform subsystem and holonomic manipulators subsystem. By considering the kinematic controller of mobile platform, 

the dynamic controller is developed to ensure a good tracking of x, y and ∅. The control law of the manipulator subsystem 

is developed based on Lyapunov theory. The proposed control method demonstrated an effective control performance on 
mobile manipulator. As a future work, the proposed decentralized control strategy will be validated experimentally and 

will be also applied to other kinds of electro- mechanical systems. 
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