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Abstract - A simple but reliable model tuning method was developed in order to tune a flight model for a high-fidelity type-specific
small aircraft simulator. A genetic algorithm (GA) was used as a parameter estimation method. GAs are robust parallel heuristic search
methods that often use least squares curve fitting methods to solve complex problems. They belong to the class of evolutionary computing
algorithms that mimic natural processes, in this case evolution, to predict behaviour and solve optimization problems. A population of
possible solution sets is selected at random and the known math model is then used to determine the behaviour of each of these possible
solutions. The behaviour of each is then compared to the desired behaviour of the model, i.e., the reference data set, and the error is
calculated. Those with the highest error are culled from the population while those with the lowest error are deemed to be “parents”.
These parent solution sets are then paired together, to create “children” by finding a weighted average of the parents. To ensure the
solution space is fully explored, “mutations” are also created by replacing a single part of select solution sets with a randomly-generated
value. Two mutation mechanisms were used in the algorithm described in this paper to ensure that the solution space was explored fully
while avoiding convergence on a local, rather than global, minimum. The second generation solution set is 50% comprised of parents,
25% comprised of children, and 25% comprised of mutations. The process repeats until the convergence criteria is met. This algorithm
was successfully tested with multiple dynamic systems, including simulated flight test data created using X-Plane, a flight simulator
software. The algorithm proved to be a capable and adaptive parameter estimation method applicable to a wide variety of dynamic
models, including flight models.
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1. Introduction
Flight model tuning is an important step in the development of a high-fidelity type-specific aircraft simulator. In

an effort to develop a low-cost high-fidelity Diamond Aircraft DA20-A1 Katana flight simulator, an automated method for
extracting stability derivatives from flight data was developed using a simple, but powerful, genetic algorithm (GA). As will
be shown, not only is the developed algorithm capable of tuning a flight model, but it is readily adaptable to potentially
tune any system for which the governing equations of motion and the desired behaviour are known. This paper provides an
overview of flight model tuning, describes the operation of genetic algorithms, details the development of the flight model
tuning algorithm, presents sample results, and provides relevant discussion.

2. The KatanaSim
The KatanaSim project was an investigation into the feasibility of developing a cost-effective high-fidelity type-specific

small aircraft simulator for use as part of an ab-initio flight training program. The development of the KatanaSim, a Diamond
DA20-A1 Katana flight simulator built with commercial off-the-shelf components and original aircraft parts wherever possi-
ble, proved the feasibility of the endeavour. Particularly successful was the high level of physical fidelity achieved by the use
of original aircraft parts, most notably a Katana fuselage. The development cost of the KatanaSim was significantly less than
the six and seven figure costs usually associated with high-fidelity flight simulators.

In order to acquire the data necessary for flight model evaluation and tuning, a minimally-intrusive flight testing
methodology for small aircraft was developed. A compact instrumentation package was designed and tested, and a flight
permit from Transport Canada was obtained. Two flight tests in a DA20-A1 Katana were completed and several hours worth
of flight testing data was acquired.

X-Plane, by Laminar Research, was chosen as the core simulator software and Plane Maker, a part of the same package,
was used to develop the flight model. Aircraft model parameters were obtained from published data sources, empirical
measurements, and observations. The resulting flight model required additional tuning, discussed subsequently, to meet the
desired performance specifications.
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3. Flight Modelling
There are two main approaches to flight modelling: model prediction and parameter estimation. Model prediction

does not require the equations of motion of the system to be known. Model prediction methods use complex algorithms,
like neural networks, to predict model behaviour based on given sets of input and output data. Rather than optimizing the
defining parameters of the system, then entering these parameters into the mathematical model, model prediction replaces the
mathematical model completely.

In contrast, parameter estimation usually requires the equations of motion of the system to be known and the parameters
contributing to the dynamics of the system to be identified. Flight test data or the desired performance data is used to optimize
the flight parameters in order to produce the desired system output. Some examples of parameter estimation techniques
include the output error method, Kalman filters, and genetic algorithms.

Of these two methods, parameter estimation was favoured by the authors due to the proven reliability of industry-
standard aircraft mathematical flight models.

3.1. Neural Networks
Neural networks (NNs) belong to the class of evolutionary computing algorithms and are a mathematical metaphor

for a biological brain. The type used most frequently in modelling and simulation is the feed-forward network with back-
propagation learning [1]. The network is given input-output pair examples and the back-propagation algorithm works to
reduce the error of the program. Neural networks have a broad range of uses but have been applied specifically to parameter
estimation problems like aerodynamic coefficient prediction for wind tunnel data [2] and flight vehicle parameter estimations
in which the aerodynamic coefficients of a flight vehicle were calculated given the initial vehicle orientation, velocities,
accelerations, and control inputs.

One of the most unique aspects of NNs is that they do not require actual mathematical modelling of a system in order to
predict the response of that system, making them ideal for predicting the behaviour of complex systems. In some cases where
the design of a flight simulator includes the development of the flight model engine (rather than purchasing COTS software)
NNs are used as a method of predicting aircraft behaviour [3].

3.2. Output Error Method
The output error method is a maximum likelihood estimation technique based on minimizing the quadratic error be-

tween simulated and actual system outputs. Nonlinear programming algorithms are used to solve a nonlinear least-squares
problem in order to converge on the optimal system parameters [4].

In Lee and Yoon [5], the output error method proved its value in flight modelling but the method does have weaknesses.
The output error method will converge well on a local maximum but global convergence does not occur. More accurate results
can be produced using prediction error methods or other algorithms which are better suited for global convergence [6].

3.3. Kalman Filters
Extended Kalman filters (EKFs) and unscented Kalman filters (UKFs) have both been used for recursive flight pa-

rameter estimation. Using filters for parameter estimation requires modelling the problem as a state estimation problem and
then artificially defining the unknown parameters as state variables before solving. EKFs work on the principle of applying
instantaneous linearizations to each time step in order to approximate the nonlinearities. Strong nonlinearities in a system
can cause difficulties with the EKF, leading to incorrect results or divergence. Despite this, EKFs are one of the most popular
filtering techniques in the aerospace industry and have been implemented successfully in a variety of parameter estimation
problems. UKFs overcome the inability of EKFs to handle nonlinear systems by avoiding the approximations introduced by
the linearizations in the EKFs but also require more processing power to do so [7].

3.4. Genetic Algorithms
Genetic algorithms (GAs) belong to the class of evolutionary computing algorithms that attempt to mimic natural

processes to predict behaviour and solve optimization problems ranging far beyond flight modelling. The widely adaptable
nature of these algorithms allows them to solve problems in fields ranging from economics to medicine [1]. GAs solve these
problems using curve fitting, a process by which a closed-form function is approximated in order to provide the line of best fit
to a given data set. There are many ways to approximate a function; however, given a complex function with a nonlinear form
or without information regarding derivatives, there are few available methods that work well. Genetic algorithms are robust
parallel heuristic search methods that often use least squares curve fitting methods to solve complex problems. Perhaps one
of the greatest strengths of a GA is the ability it has to avoid convergence on local optima by completing a thorough search of
the possible solution space. With even the weakest correlations between proposed solutions and function values, a GA will
almost always be able to produce a nearly-optimal solution [8].

Prior use of genetic algorithms for flight model parameter identification has been almost exclusively in tandem with
other parameter estimation techniques. The GAs have been used to optimize other algorithms and are popular in their ability
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to improve neural network performance; however, the GAs have not previously been applied, to the authors’s knowledge, as
a flight model estimation method on their own.

This investigation into the use of GAs was motivated by the simplicity and the proven curve-fitting ability of GAs as
well as the novelty of use for flight model parameter estimation. Additionally, GAs, unlike the output error method, are adept
at converging on the global minimum and require less computational power than Kalman filters. A GA was chosen over a
neural network because the design and implementation of a GA was deemed simpler and more rigorous than a neural network.

4. Development of a Genetic Algorithm
GAs mimic the role of genotypes and phenotypes in natural selection. The genotype of an organism is the information

stored in the genetic code of that organism. The genotype holds the blueprints for that organism’s appearance and behaviour.
The actual appearance and behaviour themselves are called the phenotype [1]. Given an initial population and an environ-
mental pressure which favours a particular phenotype, the genetic code of the population will trend towards those genotypes
which can produce the most suitable phenotypes for the environment. New genotypes are produced with each generation due
to the sharing of chromosomes through reproduction and the introduction of new chromosomes through random mutations.
As the less-suitable genotypes do not reproduce, beneficial chromosomes and mutations are passed on to future generations
through a process known as natural selection.

Mimicking this process in modelling, the coefficients in an equation set are assembled into a bit string that is analogous
to the genotype of an organism. The behaviour of the system with those coefficients is the phenotype. A population is created
with a number of different genotypes. An environmental pressure is then applied by culling those genotypes which do not
closely adhere to the desired behaviour of the system.

4.1. Development Example 1: Mass Spring Damper System
In order to develop a curve fitting GA which could be used for flight model tuning, a series of simple, classical problems

was explored first to refine the selection, breeding, and mutation mechanisms.
The first problem was based on a basic cart, spring, and damper system as shown in Figure 1a. The GA was designed

to determine the mass of the cart m, linear spring constant k, and viscous damping coefficient c, given the initial conditions
of the system and the behaviour of the cart. A reference data set was created by assigning values for the mass of the cart,
the spring constant, and the damping coefficient. The dynamics of the cart were then calculated, given an initial force, cart
position, and cart velocity. The position of the cart was recorded at intervals of 0.05 seconds for a total of 30 seconds. This
array became the reference data (phenotype) against which future possible solution sets (genotypes) would be compared and
ranked.

4.1.1. Survival of the fittest

This example problem was used to extensively test the performance of the genetic algorithm with a variety of population
sizes and child and mutation creation methods. Due to the simplicity of the problem, a population size of forty was chosen.
The initial coefficient sets were randomly generated given certain assumptions on the upper and lower limits of the possible
values of m, c, and k. The response of the system was calculated for each combination of m, c, and k and then compared to
the reference behaviour array. A fitness function, the sum of squares error (SSE) was then used to compare each set. This
fitness value determined whether or not that particular solution would be culled from the population, or whether it would be

(a) System consisting of a cart with spring and
damper (b) Sliding pendulum system

Fig. 1: Dynamic systems used for the creation and development of a simple curve-fitting GA.
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part of the next generation. The solutions were ranked from lowest to highest SSE, and those in the lowest half were marked
as the survivors and carried over to form 50% of the next generation. The better half of the surviving population members
were deemed as suitable “parents” for the next generation.

4.1.2. Children

After the least fit population members were culled, it was desirable to repopulate and keep the population constant
from one generation to the next. Twenty-five percent of the population was filled by “breeding” children from the best-ranked
parents. Parents 1 and 2 were paired together to create two children, Parents 3 and 4 were paired together to create two
children, and so on, so that the ten designated parent genotypes produced ten new genotypes to test with the system. The
ith coefficients, or “chromosomes” of the children, were found using an arithmetic crossover of the ith chromosomes of the
parents [1].

Child1i = α∗Parent1i +(1−α)∗Parent2i
Child2i = α∗Parent2i +(1−α)∗Parent1i

There are infinite possibilities for breeding children by varying parameter α , the number of chromosomes affected, how many
children are produced from each parent set, and the selection of parents for breeding. Applying the above formula to each
chromosome was found to result in the best performance of the algorithm when α was set equal to 0.35.

4.1.3. Mutations

After the children were bred, the remaining 25% of the population was filled with mutations. Mutations are a way of
increasing the number of paths being explored in the solution space and decreasing the likelihood of convergence on a local
optimum [1].

Mutations are created by selecting one or more chromosomes in a given genotype to be summed with a randomly
generated value. A higher frequency of chromosome mutation will result in greater exploration of the possible solution space,
but too high a frequency could slow solution convergence.

The mutation driver in this GA was applied to the parents. One coefficient from each solution was randomly chosen for
mutation, and a value Z was added to it. Originally, the value Z was defined as a random number between -2 and 2 multiplied
by the range of the values of that chromosome in the population. This mutation method was taken from Gulsen [8]. Using
this mutation method alone resulted in occasional convergence at a local, rather than global, minimum. To avoid this effect, a
second mutation method was established. Once convergence of the SSE had reached a certain threshold, the mutation value
Z would be defined as a random number between -2 and 2 multiplied by 10% of the value of that chromosome.

4.1.4. Iterations and convergence

Once the ten child genotypes and the ten mutation genotypes had been created, they were added to the original twenty
randomly-generated genotypes chosen as parents, to complete the population set. The behaviour of the genotypes (the dynam-
ics of the cart system) were then evaluated and the entire population was reordered from smallest to largest SSE. The twenty
genotypes with the highest SSEs were culled and the next generation of children and mutations was created. This continued
until the lowest SSE was less than a chosen threshold. The algorithm was used to solve for the unknown cart-spring-damper
system coefficients 550 times to establish the repeatability of the genetic algorithm. The average error between an actual
coefficient and a coefficient tuned by the algorithm was 0.33% and the largest error was 0.92%.

After confirmation that this GA worked well in determining the mass, spring constant, and damping coefficient of the
system, the size of the population was increased to 1000. This increase in size greatly decreased the number of algorithm
iterations, or generations, required to reach convergence.

4.2. Development Example 2: Sliding Pendulum
In the second phase of development, the GA was used to find the unknown mass and spring constant in a sliding

pendulum system, shown in Figure 1b, given a time-dependent forcing function. While the GA was used to only find two,
rather than three unknown coefficients, solving this system confirmed the algorithm could perform equally well when tuning
systems with multiple coupled degrees of freedom.

4.3. Development Example 3: Planes and Polynomials
In the third phase of development, the GA was used to solve for the coefficients of a variety of polynomials describing

curves and planes. The objective of this phase was to evaluate the ability of the algorithm to handle a larger number of
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unknown coefficients than had previously been tested. Populations of up to 5000 were tested with polynomials with as many
as 15 unknown coefficients. The polynomial equations were chosen to represent a wide variety of curve shapes, sizes, and
complexities. No unforeseen problems with the algorithm were encountered and model convergence was achieved for all
cases.

4.3.1. Sequential Evolution Mechanisms

One particular consideration for some curve-fit-optimization problems is how the contribution of each element to the
overall fitness of a genotype can vary significantly, i.e., the higher-order coefficients in a polynomial will have a greater effect
on the phenotype than the lower-order coefficients. If breeding and mutations affect each chromosome equally, the evolution
of the genotype will focus on the more influential chromosomes at the expense of the less influential chromosomes.

One solution for this phenomenon was the implementation of sequential evolution mechanisms (SEMs) as developed by
Gulsen, Smith, and Tate [8]. In this procedure, chromosomes are grouped by the magnitude of their effect on the phenotype,
and only one group at a time will be activated during the breeding and mutation sequences used to create the next generation.
In the most-extreme form of SEM, each chromosome could evolve separately. In most SEMs, each chromosome group is
activated sequentially so that each group is given an equal number of evolutions before convergence [8].

5. Flight Model Tuning Using Stability Derivatives
The final step in successfully applying the GA to flight model tuning was to use linearized small-disturbance rigid body

equations of motion to determine the stability derivatives of an aircraft, based on recorded flight dynamics data.
Flight simulator software generally uses either stability derivatives or blade element theory to drive the simulator flight

model. The required flight model parameters in each system differ greatly, with stability-derivative-based software requiring
performance parameters (either aerodynamic coefficients or the stability derivatives themselves), and blade-element-theory-
based systems requiring physical parameters (geometry and engine power specifications). Had the flight dynamics model for
X-Plane been readily available, the geometric parameters of the X-Plane aircraft would have been tuned to produce the most
accurate flight model possible for the KatanaSim. As this was not the case, a different math model was selected in order to aid
in the development of an automated flight model tuning method, with the understanding that in a future phase of development,
the compatibility issue between the model tuning algorithm and the KatanaSim software would be resolved.

5.1. Tuning of Two-dimensional Stability Derivatives
The longitudinal equations of motion for an aircraft were derived, encompassing the forward and vertical motion as

well as pitch changes of the aircraft. A two-dimensional analysis was chosen, as the resulting equations would be adequate
for initial testing of the genetic algorithm before implementing the full set of equations required to define the system in three
dimensions. Figure 2 defines the relevant angular and linear velocities and accelerations.

Fig. 2: Definitions of angular and linear axes, forces, moments, and velocities.

The rigid body equations governing aircraft motion in response to the X and Z aerodynamic forces, and the aerodynamic
moment M, are written as:

X −mgsinθ = m(u̇+qw) (1)
Z +mgcosθ = m(ẇ−qu) (2)

M = Iyq̇ (3)
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The equations above are nonlinear, coupled, and lend no direct insight as to the handling characteristics of the air-
craft [9]. The linearized approximations of these equations are much more useful in analysing the stability and control
characteristics of the aircraft. These approximations can be found using the small-disturbance theory in which the motion
of the aircraft is described as small perturbations about a reference condition [10]. Because of these approximations, the
resulting equations of motion cannot be used to produce accurate results for manoeuvres where large-amplitude perturbations
occur, as is the case for spins and stalls. Note that these approximations are not found in blade element theory models, thereby
providing another advantage of using the X-Plane software for the KatanaSim model.

The final version of the linearized small-disturbance longitudinal rigid body equations of motion were written in state
space form as follows:


u̇
ẇ
q̇
θ̇

=

 Xu Xw 0 −gcosθ0
Zu Zw u0 −gsinθ0

Mu +Mẇ Mw +MẇZw Mq +Mẇu0 −Mẇgsinθ0
0 0 1 0


u
w
q
θ

+

 Xδe XδT
Zδe ZδT

Mδe +MẇZδe MδT +MẇZδT
0 0

{δe
δT

}

where the vector containing u, w, q, and θ is the state variable vector and the vector containing δe and δT is the control
vector. Combined, these two vectors comprise the required inputs to the algorithm. The constants in the matrices (other than
the acceleration due to gravity g and the nominal pitch angle θ0) are the unknown stability derivatives. The full derivation and
definition of these equations is available [11].

The inputs could have been acquired either through flight testing or through flight simulation. Due to test schedule
constraints, flight simulator output files were selected for testing. Simulated flight data from a Cessna 172 model was collected
using X-Plane. The X-Plane output file contained the roll and pitch angles, angular rates, control surface deflection angles,
angle of attack, angle of sideslip, and thrust of the aircraft. Once the inputs and reference performance curves had been
defined, the tuning parameters were set as the 14 stability derivatives used in defining the longitudinal motion of the aircraft.
The pseudo-random number generator used to create the initial population was set to generate random numbers between -1.0
and 1.0 but no limitations were put on how high or low the mutations could push the coefficients.

The algorithm was initiated using the X-Plane output as the reference input file for the program. As the flight model was
significantly more complex than the previously-tested models, the convergence criterion was redefined. Rather than having
a fixed SSE goal, the final version of the genetic algorithm defined convergence to be when the mutations and children were
no longer improving the solutions. Figure 3a shows the convergence plot where the SSE began with a value over 96000 and
converged with an SSE of 79.2 for the 1500 performance points being matched. Figures 3b, 3c, and 3d, show the agreement
between the reference curves and the curves produced using the tuned stability derivatives.

5.2. Tuning of Three-dimensional Stability Derivatives
Once tuning the longitudinal stability derivatives using the GA had been proven possible using the two-dimensional

formulation, it was a natural next step to expand the algorithm to perform a three-dimensional analysis which would include
the lateral and directional stability derivatives as well. As was done with the longitudinal equations of motion, the lateral and
directional equations were derived and written in state space form as

v̇
ṗ
ṙ
Φ̇

 =

Yv Yp −(u0 −Yr) gcosθ0
Lv Lp Lr 0
Nv Np Nr 0
0 1 0 0




v
p
r
Φ

+

 0 Yδr
Lδa Lδr
Nδa Nδr
0 0

{δa
δr

}

where the structure is similar to the previously-described longitudinal equation [11]. The longitudinal stability derivatives
remained the same despite the fact that the derivations of the two-dimensional and three-dimensional equations of motion
differ slightly. The additional 14 stability derivatives were combined with the previous tuning parameters resulting in a total
of 28.

A new input file was created by flying a flight in X-Plane which included pitch, roll, yaw, and throttle inputs. The
GA converged with an SSE of 74.5 for the 2280 performance points being matched. The reference accelerations and those
produced by the 28 tuned stability derivatives were plotted and the results are shown in Figures 4a through 4f.

6. Discussion
The ability of the GA to tune the stability derivatives defining the equations of motion of an aircraft was tested using

simulated flight test data from X-Plane. The GA was able to optimize the coefficients to produce performance curves that
closely match the reference curves. Some variations in the curves were seen but these were not unexpected. Because the
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reference curves originate from the blade-element-theory-based math model in X-Plane, while the algorithm calculates the
performance curves using a stability-derivative-based math model, differences in the data were inevitable due to the assump-
tions and omissions that are inherent in the stability derivative derivations.

The genetic algorithm that was developed proved to be a very reliable, capable, and adaptable parameter estimation
method. The simplicity and robustness of the algorithm make it well suited for adaptation to a variety of dynamic models,
flight models, and similar applications.

(a) Convergence of SSE by iterations. (b) Linear acceleration, ẇ

(c) Angular acceleration, q̇ (d) Linear acceleration, u̇

Fig. 3: Linear accelerations versus time, for calculated data (black lines) from the GA and reference data from X-Plane
(dashed lines) in two dimensions, as well as the convergence plot.
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(a) Linear acceleration, u̇ (b) Angular acceleration, ṗ

(c) Linear acceleration, v̇ (d) Angular acceleration, q̇

(e) Linear acceleration, ẇ (f) Angular acceleration, ṙ

Fig. 4: Calculated data from the GA (black lines) and reference data from X-Plane (dashed lines) in three dimensions.
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