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Abstract - In this paper is investigated the control of the temperature on one side of the plate from the opposite side. To solve this 

problem, Laplace transform is used to obtain the quadrupole model of the direct heat equation and the analytical solution for the transfer 

function for the inverse problem. The resulting hyperbolic functions are approximated by Taylor expansions and the real-time open loop 

temperature control to a desired value is formulated.  

 This approach is different from previous regularization methods of ill-posed problem and is suitable for real-time temperature 

control. Simulation results show the advantages and limitations of using inverse problem to control temperature of a plate.  
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1. Introduction 
 The problem of temperature control of a thin metal plate is affected by the fast temperature amplitude decrease with 

regards to frequency and thickness. In most cases this consists in applying input temperature at one side in order to modify 

the temperature on the other side of the plate and in open loop control this requires to use inverse problem solution, known 

to lead to an ill-posed problem [1], [2]. There are many methods to address the ill-posed problem and an investigation is 

required to find out a suitable one for each application.  

 Maillet [1], Beck [2] and Necsulescu [3], in their books presented a wide variety of solutions for solving inverse heat 

transfer problems in case of temperature monitoring for plates. Feng et al in 2010 solved the problem of heat conduction 

over a finite slab to estimate temperature and heat flux on the front surface of a plate from the back surface measurement. 

To do this, they linked the temperature and heat flux on both sides by transfer functions and used these functions to solve the 

problem for heat input on the front  surface of a plate, [4] and [5]. Feng and al. In 2011solvedthesame problem using a1-

Dimensional (1D) modal expansion [6].Fan et al. obtained temperature distribution on one side of a flat plate by solving the 

inverse problem based on the temperature measurement on the other side of a plate, using the modified one-dimensional 

correction and the finite volume methods, [7]. Monde developed an analytical method to solve inverse heat conduction 

problem using Laplace transform technique [8].  

 In this paper the 1D heat conduction equation is formulated in the Laplace domain to determine the hyperbolic transfer 

functions relating input and output temperature of a thin plate for both direct and inverse problems. Real-time open loop 

control problem, which differs from the known monitoring problem, is approached using finite Taylor expansions of the 

hyperbolic functions. Internet-of-Things provides new interest in remote open loop control of systems. 

 

2. Problem Formulation 
 The 1D heat conduction equation is given by: 

 

∂2θ

∂z2
  =    

1

α

∂θ

∂t
 (1) 

 

 Boundary conditions were considered the following: 

 

θ1(0, t) = A sin⍵t  θ2(L, t) = free (2) 

∅1(0, t) =  free                ∅2(L, t) =  0 (3) 
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 where 𝜃 is the temperature and ∅ is the heat flux. 

 These boundary conditions were chosen for the investigation of temperature control with sinusoidal input 𝜃1(0, 𝑡) 

resulting in the temperature output 𝜃2(𝐿, 𝑡)on the opposite side of a plate of thickness L. The heat flux ∅1(0, 𝑡) results from 

the imposed 𝜃1(0, 𝑡), while heat flux ∅2(𝐿, 𝑡) corresponds to isolated side of the plate. 

 Applying Laplace transform, this equation becomes: 

 

d2θ(z, s)

dz2
 =  

s

α
θ(z, s) (4) 

 

 where α is the thermal diffusivity.                     

 The solution of this equation is [2, 3]: 

 

θ(z, s) = A1cosh(Kz) +  A2sinh(Kz) (5) 

 

 where θ is the temperature.  

 The heat flux is given by:  

 

∅(z, s) =  −ks
dθ

ds
 (6) 

 

 where   
 

K = √
s

α
 (7) 

 

 These equations define the thermal quadrupole given the defined boundary conditions [1], in this case: 

 

θ1(0, s) = A
⍵

S2 + ⍵2
θ2(L, s) = free (8) 

 

 where A is the input temperature amplitude. 

 ∅1(0, s) =  free∅2(L, s) =  0, where L is the plate thickness. 

 Substituting boundary conditions for temperature equation give the following results: 

 

A1 = A
⍵

S2 + ⍵2
       , A2 = −A

⍵

S2 + ⍵2
tanh (KL) (9) 

 

 For the aboveA1andA2the solutions become: 

 

θ(z, s) = A
⍵

S2 + ⍵2
[cosh(Kz) − tanh(KL) sinh(Kz)] (10) 

∅(z, s) = −ksKA
⍵

S2 + ⍵2
[cosh(Kz) − tanh(KL) sinh(Kz)] (11) 

 

 where k is the thermal conductivity.           

 For the investigation of the dynamics of temperatures θ1and θ2, the following equations are used: 

 

θ1 =  θ(0, s) =  A
⍵

S2 + ⍵2
 (12) 

θ2 =  θ(L, s) =  A
⍵

S2+⍵2
[cosh(KL) − tanh(KL) sinh(KL)]= A

⍵

S2+⍵2[1/cosh(KL)] (13) 
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 The transfer function of the direct problem linking θ1and θ2[3] is: 

 

G1 =  
θ2

θ1
= [

1

cosh(KL)
]=sech(KL) (14) 

 

 The transfer function for the inverse problem [1] to [3] is: 

 

G2 =
1

G1
=  cosh (KL) (15) 

 

 The open loop control block diagrams shown in Fig. 1. 

 

θ2
d                                                              θ1                                              θ2 

 

   

 
Fig. 1: Open loop block diagram. 

 

 MATLABTM and SimulinkTM are used for simulating the above system. 

 In this formulation, the hyperbolic functionsG1 and G2 contain square root of s: 

 

x= KL = √
s

α
L    (16) 

 

 Taylor series expansion provides equations in integer powers of s. For G1 = sech(x) Taylor series expansion is: 

 

G1 = sech(x) =  ∑ (
En

n!
) xn

∞

n=0
 for | x| <

𝜋

2
 (17) 

 

 where Euler numbers En are zero for odd-indexed numbers, while even indexed numbers are: 

 E0=1 

 E2=-1 

 E4=5 

 E6=-61 

 E8=1385 

 E10=-50521 

 E12=2702765 

 E14=-199360981    etc. 

 For G2 = cosh(x), also an even function results: 

 

G2 = cosh(x) =  ∑ (
1

(2n)!
)  x2n       

∞

n=0
for -∞< x< ∞ (18) 

 

 The above Taylor series expansions of 1/G1=cosh(x) and G2=cosh(x) contain only even-indexed terms, and give 

integer number powers polynomials in s for simulation. This polynomial approximation, easy to compute, is particularly 

useful in real-time control of the plate temperature. 

 For the Simulink simulation, Taylor expansion of the direct problem transfer function,G1, will be limited to N terms, 

and inverse problem transfer function,G2, is limited to M terms. For the transfer function G1*G2,N and M are chosen such 

that N≥M. In the simulated case, here a thin Aluminum plate, has the thickness L = 0.03 [m] and thermal diffusivity α= 

9.715e-5 [m2/sec], such that: 

 

𝐺2 
 

𝐺1 
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x= KL = √
s

α
L=√

s

9.715∗10−5 
0.03   (19) 

 

 For the simulations was chosen M=4 and M=8, i.e. N >M: 

 

G2(s) = cosh(KL)  =  1 +  4.632s +  3.576s2  +  1.104s3 (20) 

G1 (s) =
1

cosh(KL)
=  1/(1 +  4.632s +  3.576s2  +  1.104s3  +   0.1827s4  + 0.0188s5  
+                                                       0.00132s6 + 0.00006717s7 ) 

(21) 

 

3. Results and Discussion 
 Simulations were carried out for open loop control for different values of input frequency and for the desired sinusoidal 

temperature amplitude of 200above the original temperature, i.e., for 20 sin ⍵𝑡. 

 Simulations were carried for the direct problem G1 for M=8 while for inverse problem G2 for M= 4. The input wasθ2
d= 

20sin(⍵t).Simulation results for⍵ =0.1, 1, 5, and 10 are shown in Fig. 2-6 

 

 
(a)                                                                                (b) 

Fig. 2: The outputs (a) of inverse problem 𝜃1 and of (b) open loop control 𝜃2for⍵= 0.1 rad/sec. 

 

 
(a)                                                                                       (b) 

Fig. 3: The outputs (a) of inverse problem 𝜃1 and (b) of open loop control 𝜃2for⍵ = 1 rad/sec. 

 

 
(a)                                                                                       (b) 

Fig. 4: The outputs (a) of inverse problem 𝜃1 and (b) of open loop control 𝜃2for⍵ = 5 rad/sec. 
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(a)                                                                                       (b) 

Fig. 5: The outputs (a) of inverse problem 𝜃1 and (b) of open loop control 𝜃2for⍵ = 10 rad/sec. 

 

 
(a)                                                                                (b) 

Fig. 6: The output of open loop control with N=8, M=4 for (a), ⍵= 12and (b) 15 rad/sec. 

 

 Fig. 7 shows the Bode diagram of open loop control transfer function G1*G2 for N=8 and M=4.  

 

 
Fig. 7: Bode diagram of open loop control transfer function G1*G2 for N=8 and M=4. 

 

 The simulation results in Fig. 2-5 represent (a) the outputs of the inverse problem 𝜃1 and (b) of open loop control 

𝜃2with N=8, M=4 for ⍵ = 0.1, 1, 5 and 10 rad/sec. The output temperature 𝜃2results in Fig 2 and 3,for lower frequencies of 

0.1 and 1 rad/sec, compared to desired one, θ2
d =  20 sin⍵t,and of the command temperature  θ1, are very close. The results 

in Fig 4 and 5, for output temperature θ2, for higher frequencies of 5 and 10 rad/sec, compared to desired one, θ2
d =

 20 sin⍵t, and of the command temperatureθ1, are significantly different. This can be explained by the very high amplitudes 

of the output of the inverse problem in fig. 4a and 5a, which lead eventually to an ill-posed inverse problem, particularly 

with regard to parameters L and α uncertainty. For ⍵ = 12, Fig. 6a shows an amplitude lower than in Fig 5b and for ⍵ =15, 

shows an amplitude much lower than in Fig 5b. Bode diagram of open loop control transfer function in Fig. 7 explains this 

by indicating significantly lower magnitudes for ⍵>11 rad/sec.In open loop control, since there is no feedback from the 

output, parameter uncertainty and disturbance effects cannot be reduced. Further study will focus on closed loop temperature 

control. 
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4. Conclusions 
 The temperature on the one face of a plate can be open loop controlled in real-time to a desired value from the other 

face using the proposed polynomial approach. The resulting hyperbolic functions are approximated by Taylor expansions. 

The proposed approach is different from previous regularization methods of ill-posed problems due to using truncated 

polynomials and is particularly suitable for real-time open loop temperature control. Simulation results indicate the 

advantages and the limitations of the proposed approach.  
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