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Abstract - In this paper, a Pareto optimal strategy for uncertain Markovian linear stochastic system with multiple decision makers is 

investigated. By applying the guaranteed cost control principle, a set of conditions, wherein the stochastic system is exponentially 

mean-square stable (EMSS) and has a cost bound, is obtained using the stochastic algebraic Riccati inequality (SARI). In addition, the 

minimization problem of the cost bound is formulated. It is shown that the necessary conditions can be derived by a set of cross-

coupled stochastic Riccati equations (CCSAREs).  
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1. Introduction 
Markov jump linear stochastic systems (MJLSSs) have been introduced to describe dynamics that are characterized by 

a stochastic process under random noise, unmodeled uncertainties, and abrupt changes of the operating points in various 

electrical and mechanical systems. In order to obtain a general representation of such sources of performance degradation, 

uncertain Markovian jump linear stochastic systems (UMJLSSs) have been extensively studied. Notably, UMJLSSs, unlike 

MJLSSs, can represent the deterministic uncertainties, which are independent of any stochastic process. Consequently, 

robust control techniques counteracting these system variations have been widely investigated in recent years, and a variety 

of different approaches to designing the controller has been adopted over the last decade. In [1], the 𝐻∞ problem for 

UMJLSS governed by Itô stochastic differential equations has been considered. Necessary and sufficient conditions for the 

existence of the infinite horizon mixed 𝐻2/𝐻∞ control of stochastic Markovian jumps have been obtained by means of a 

pair of coupled Riccati-type equations [2].  

With the increasing demand for control strategies to be applied, for instance, to multi-agent systems, dynamic games 

for a class of Markov jump stochastic systems have received considerable attention in recent years. The Nash equilibrium 

strategy set for multiparameter singularly perturbed Markov jump stochastic systems has been established by solving the 

cross-coupled stochastic algebraic Riccati equations (CSAREs) [3]. 𝐻2/𝐻∞ control problem for a class of Markov jump 

linear stochastic systems with (𝑥, 𝑢, 𝑣)-dependent noise involving multiple decision makers has been addressed [4]. 

Nash games and the related 𝐻2/𝐻∞ control for a class of linear stochastic systems with Markovian jump parameters, both 

in finite-time and infinite-time horizon, have been studied [5]. In [6], the stochastic non-cooperative differential game 

theory of generalized linear Markov jump systems and its applications have been studied extensively. Even though fruitful 

results have been obtained in these studies, there is no discussion on robust dynamic games taking into account unmodeled 

deterministic uncertainties and external disturbances. The reason is that the strategy set in dynamic games is not unique for 

describing a system’s unmodeled dynamics and the exact cost cannot be computed due to deterministic uncertainties.  
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In this paper, the Pareto optimal strategy for UMJLSS involving multiple decision makers is discussed. In particular, a 

novel robust strategy set against Markov switching models and deterministic uncertainty is formulated. By applying the 

well-known guaranteed cost control principle [7], the conditions, wherein the stochastic system is exponentially mean-

square stable (EMSS) and has a cost bound, are given by the stochastic algebraic Riccati inequality (SARI). In contrast to 

the existing control strategy [3, 4, 5, 6], it is more difficult for dynamic games to attain their equilibrium due to the 

complexity of the calculation of their cost bound. Hence, this research is a non-trivial extension of the existing results. Our 

results can be summarized as follows. Initially, a preliminary result about single decision makers is obtained. Namely, the 

SARI is established. This implies that the closed-loop UMJLSS are exponentially mean-square stable and their 

performance has an upper cost bound. The minimization problem of the cost bound is formulated and the necessary 

conditions are derived from the set of cross-coupled stochastic Riccati equations (CCSAREs) by means of the Karush-

Kuhn-Tucker (KKT) conditions. 

Notation: The notations used in this paper are fairly standard. 𝔼[ ⋅  | 𝑟𝑡 = 𝑖] stands for the conditional expectation 

operator with respect to the event {𝑟𝑡 = 𝑖}. 𝜒𝐴 denotes indicator function. 𝕄𝑛,𝑚
𝑠  denotes space of all 𝐒 = (𝑆(1),  . . .  , 𝑆(𝑠)) 

with 𝑆(𝑖) being 𝑛 × 𝑚  matrix, 𝑖 ∈ 𝒟 , 𝒟 = {1,  2,  . . .  , 𝑠}. Moreover, the component of 𝐒 + 𝐓𝐔 is defined as 𝐒 + 𝐓𝐔 =
(𝑆(1) + 𝑇(1)𝑈(1),  . . .  , 𝑆(𝑠) + 𝑇(𝑠)𝑈(𝑠)). 

  

2. Definition and Preliminaries 
 Let (𝛺,  ℱ,  {ℱ𝑡}𝑡≥0,  𝐏) be a given filtered probability space where there exists a standard one-dimensional Wiener 

process 𝑤(𝑡), 𝑡 ≥ 0, and a right continuous homogeneous Markov process 𝑟𝑡, 𝑡 ≥ 0 with state space 𝒟 = {1,  2,  . . .  , 𝑠}. It 

is assumed that {𝑤(𝑡)}𝑡≥0  and {𝑟𝑡}𝑡≥0  are independent stochastic processes. Moreover, it is assumed that the Markov 

process 𝑟𝑡 has the transition probabilities given by 

 

𝑷{𝑟𝑡+ℎ = 𝑗 |𝑟𝑡 = 𝑖} = {
𝜋𝑖𝑗ℎ + 𝑜(ℎ), if 𝑖 ≠ 𝑗

1 + 𝜋𝑖𝑖ℎ + 𝑜(ℎ), if else
 (1) 

 

where limℎ→0𝑜(ℎ)/ℎ = 0, 𝜋𝑖𝑗 ≥ 0 for 𝑖 ≠ 𝑗 and 𝜋𝑖𝑖 = − ∑ 𝜋𝑖𝑗
𝑠
𝑗=1, 𝑗≠𝑖  [8]. 

Definition 1. [1] We consider the following linear stochastically controlled uncertain system with Markovian 

jumps 

 

𝑑𝑥(𝑡) = [𝐴(𝑟𝑡, 𝑡)𝑥(𝑡) + 𝐵(𝑟𝑡, 𝑡)𝑢(𝑡)]𝑑𝑡 + 𝐴𝑝(𝑟𝑡)𝑥(𝑡)𝑑𝑤(𝑡), (2) 

 

where 𝑥(𝑡) ∈ ℝ𝑛 represents the state vector, 𝑢(𝑡) ∈ ℝ𝑚 represents the control inputs and 𝐴(𝑟𝑡, 𝑡), 𝐴𝑝(𝑟𝑡) ∈ ℝ𝑛×𝑛 and 

𝐵(𝑟𝑡, 𝑡) ∈ ℝ𝑛×𝑚 are matrices with the following forms: 

 

𝐴(𝑟𝑡, 𝑡) = 𝐴(𝑟𝑡) + 𝐷(𝑟𝑡)𝐹(𝑟𝑡, 𝑡)𝐸𝑎(𝑟𝑡), (3a) 

𝐵(𝑟𝑡, 𝑡) = 𝐵(𝑟𝑡) + 𝐷(𝑟𝑡)𝐹(𝑟𝑡, 𝑡)𝐸𝑏(𝑟𝑡), (3b) 

 
with 

 

𝐹𝑇(𝑟𝑡, 𝑡)𝐹(𝑟𝑡, 𝑡) ≤ 𝐼𝑛𝑎
. (4) 

  

The coefficient matrices 𝐀, 𝐀𝑝 ∈ 𝕄𝑛,𝑛
𝑠  and 𝐁 ∈ 𝕄𝑛,𝑚

𝑠  are defined by 𝐴(𝑖), 𝐵(𝑖), 𝐴𝑝(𝑖), 𝐷(𝑖), 𝐸𝑎(𝑖) and 𝐸𝑏(𝑖), 𝑖 ∈ 𝒟 with 

compatible dimensions. 𝐹(𝑟𝑡 , 𝑡) ∈ ℝ𝑛𝑝×𝑛𝑎 are uncertainty matrices. 

The uncertain stochastic system (2) is called stochastic stabilizable in the mean-square sense. If there exists a 

feedback control 
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𝑢(𝑡) = ∑ 𝐾

𝑠

𝑖=1

(𝑖)𝑥(𝑡)𝜒𝑟𝑡=𝑖 (5) 

 

such that for any initial state 𝑥(0) = 𝑥0, 𝑟0 = 𝑖, the closed-loop system 

 

𝑑𝑥(𝑡) = [𝐴(𝑟𝑡, 𝑡)𝑥(𝑡) + 𝐵(𝑟𝑡, 𝑡)𝐾(𝑟𝑡)]𝑑𝑡 + 𝐴𝑝(𝑟𝑡)𝑥(𝑡)𝑑𝑤(𝑡) (6) 

 

is exponentially mean-square stable (EMSS), i.e. 

 

𝔼[∥ 𝑥(𝑡) ∥2] ≤ 𝛽𝑒−𝛼(𝑡−𝑡0)𝔼[∥ 𝑥(𝑡0) ∥2],  ∃𝛼,  𝛽 > 0. (7) 

  

The following matrix inequality is well-known. 

Lemma 1. [9] Let 𝐷 ∈ ℝ𝑛×𝑝, 𝐸 ∈ ℝ𝑞×𝑛 and 𝐹 ∈ ℝ𝑝×𝑞 be matrices satisfying 𝐹𝑇𝐹 ≤ 𝐼𝑞. For any 𝜇 > 0, the following 

inequality holds. 

 

𝐸𝑇𝐹𝑇𝐷𝑇 + 𝐷𝐹𝐸 ≤ 𝜇𝐷𝐷𝑇 + 𝜇−1𝐸𝑇𝐸. (8) 
 

The following result is used to derive the preliminary contribution. 

Theorem 1. Consider the following autonomous UMJLSS: 

 

𝑑𝑥(𝑡) = 𝐴(𝑟𝑡, 𝑡)𝑥(𝑡)𝑑𝑡 + 𝐴𝑝(𝑟𝑡)𝑥(𝑡)𝑑𝑤(𝑡)                                                               

= [𝐴(𝑟𝑡) + 𝐷(𝑟𝑡)𝐹(𝑟𝑡, 𝑡)𝐸𝑎(𝑟𝑡)]𝑥(𝑡)𝑑𝑡 + 𝐴𝑝(𝑟𝑡)𝑥(𝑡)𝑑𝑤(𝑡),  𝑥(0) = 𝑥0
  

(9) 

 

and the cost function. 

 

𝐽(𝑥(0), 𝑟0) = 𝔼 [∫ 𝑥𝑇
∞

0

(𝑡)𝑄(𝑟𝑡)𝑥(𝑡)𝑑𝑡 | 𝑟0 = 𝑖], (10) 

 
where 𝑄(𝑟𝑡) = 𝑄𝑇(𝑟𝑡) > 0. 

We assume that there exist positive definite real symmetric matrices 𝑃(𝑖) = 𝑃𝑇(𝑖) > 0 and positive scalar parameters 

𝜇𝑖 > 0, 𝑖 = 1,  . . .  , 𝑠 such that the matrix inequalities (11) hold. 

 

�̃�𝑖 (𝐏, 𝜇𝑖) ≤ 0, 𝑖 = 1, … , 𝑠, (11) 

 

where 

 

�̃�𝑖 (𝐏, 𝜇𝑖): = 𝑃(𝑖)𝐴(𝑖) + 𝐴𝑇(𝑖)𝑃(𝑖) + 𝜇𝑖𝑃(𝑖)𝐷(𝑖)𝐷𝑇(𝑖)𝑃(𝑖) + 𝜇𝑖
−1𝐸𝑎

𝑇(𝑖)𝐸𝑎(𝑖)

+ ∑ 𝜋𝑖𝑗

𝑠

𝑗=1

𝑃(𝑗) + 𝐴𝑝
𝑇(𝑖)𝑃(𝑖)𝐴𝑝(𝑖) + 𝑄(𝑖).                                             

 

 

 

(12) 

Then, we have 

(i) The UMJLSS (9) is EMSS. 

(ii) The cost function has the following upper bound. 
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𝔼 [∫ 𝑥𝑇
∞

0

(𝑡)𝑄(𝑟𝑡)𝑥(𝑡)𝑑𝑡 | 𝑟0 = 𝑖 ] ≤ 𝔼[𝑥𝑇(0)𝑃(𝑟0)𝑥(0) | 𝑟0 = 𝑖]. (13) 

 
Proof: We first define the following Lyapunov function candidate with 𝑃(𝑖) = 𝑃𝑇(𝑖) > 0. 

 

𝑉(𝑥, 𝑖, 𝑡): = 𝑥𝑇(𝑡)𝑃(𝑖)𝑥(𝑡). (14) 
 

Using Lemmas 1 and 2 for the UMJLSS, (9) implies the following equation. 

𝒟𝑉(𝑥, 𝑖, 𝑡) + 𝑥𝑇(𝑡)𝑄(𝑖)𝑥(𝑡)                                                                                                    

= 𝑥𝑇(𝑡)(𝑃(𝑖)[𝐴(𝑖) + 𝐷(𝑖)𝐹(𝑖, 𝑡)𝐸𝑎(𝑖)] + [𝐴(𝑖) + 𝐷(𝑖)𝐹(𝑖, 𝑡)𝐸𝑎(𝑖)]𝑇𝑃(𝑖))𝑥(𝑡)

+ ∑ 𝜋𝑖𝑗

𝑠

𝑗=1

𝑥𝑇(𝑡)𝑃(𝑗)𝑥(𝑡) + 𝑥𝑇(𝑡)𝐴𝑝
𝑇(𝑖)𝑃(𝑖)𝐴𝑝(𝑖)𝑥(𝑡) + 𝑥𝑇(𝑡)𝑄(𝑖)𝑥(𝑡)         

≤ 𝑥𝑇(𝑡) �̃�𝑖 (𝐏, 𝜇𝑖)𝑥(𝑡).                                                                                                       

      

 

 

 

 

 

 

(15) 

 

Hence, if �̃�𝑖 (𝐏, 𝜇𝑖) ≤ 0 holds, then, since 𝑄(𝑖) > 0, the uncertain autonomous stochastic system is EMSS. Therefore, we 

have 𝔼[𝑉(𝑥(∞), 𝑖, ∞) | 𝑟0 = 𝑖] = 0. Thus, integrating both sides of the above equation and using 𝔼[𝑉(𝑥(∞), 𝑖, ∞) | 𝑟0 =
𝑖] = 0, we obtain 

 

𝐽(𝑥(0), 𝑟0) − 𝔼[𝑉(𝑥(0), 𝑟0, 0) | 𝑟0 = 𝑖] ≤ 0. (16) 

 

Therefore, if (13) holds, then the proof of Theorem 1 is complete.                                                                        ∎ 
 
2.1. Necessary Conditions Obtained Using KKT Conditions 

Without loss of generality, we may assume that the initial condition satisfies the following equation. 

 

𝔼[𝑥(0)𝑥𝑇(0)] = 𝐼𝑛. (17) 

 
We introduce the main contribution of this paper. 

Theorem 2. We consider the UMJLSS and the cost function (18). 

 

𝑑𝑥(𝑡) = ([𝐴(𝑟𝑡) + 𝐷(𝑟𝑡)𝐹(𝑟𝑡, 𝑡)𝐸𝑎(𝑟𝑡)]𝑥(𝑡) + [𝐵(𝑟𝑡)𝑢(𝑡) + 𝐷(𝑟𝑡)𝐹(𝑟𝑡, 𝑡)𝐸𝑏(𝑟𝑡)]𝑢(𝑡)])𝑥(𝑡)𝑑𝑡
+ 𝐴𝑝(𝑟𝑡)𝑥(𝑡)𝑑𝑤(𝑡), 

 

(18a) 

        𝑢(𝑡) = ∑ 𝐾𝑠
𝑖=1 (𝑖)𝑥(𝑡)𝜒𝑟𝑡=𝑖,   (18b) 

𝐽(𝑥(0), 𝑟0) = 𝔼 [∫ 𝑥𝑇
∞

0

(𝑡)[𝑄(𝑟𝑡) + 𝐾𝑇(𝑟𝑡)𝑅(𝑟𝑡)𝐾(𝑟𝑡)]𝑥(𝑡)𝑑𝑡 | 𝑟0 = 𝑖],                                      (18c) 

 

where 𝑄(𝑟𝑡) = 𝑄𝑇(𝑟𝑡) ≥ 0 and 𝑅(𝑟𝑡) = 𝑅𝑇(𝑟𝑡) > 0. 

We assume that there exist positive definite real symmetric matrices 𝑋(𝑖) = 𝑋𝑇(𝑖) > 0 and positive scalar 

parameters 𝜇𝑖 > 0, 𝑖 = 1,  . . .  , 𝑠 such that 

 

𝛯𝑖(𝐗, 𝐾(𝑖), 𝜇𝑖) ≤ 0,  𝑖 = 1,  . . .   , 𝑠, (19) 
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where 

𝛯𝑖(𝐗, 𝐾(𝑖), 𝜇𝑖): = 𝑋(𝑖)[𝐴(𝑖) + 𝐵(𝑖)𝐾(𝑖)] + [𝐴(𝑖) + 𝐵(𝑖)𝐾(𝑖)]𝑇𝑋(𝑖) + 𝜇𝑖𝑋(𝑖)𝐷(𝑖)𝐷𝑇(𝑖)𝑋(𝑖)           

+𝜇𝑖
−1[𝐸𝑎(𝑖) + 𝐸𝑏(𝑖)𝐾(𝑖)]𝑇[𝐸𝑎(𝑖) + 𝐸𝑏(𝑖)𝐾(𝑖)] + ∑ 𝜋𝑖𝑗

𝑠

𝑗=1

𝑋(𝑗) + 𝐴𝑝
𝑇(𝑖)𝑋(𝑖)𝐴𝑝(𝑖)

+𝑄(𝑖) + 𝐾𝑇(𝑖)𝑅(𝑖)𝐾(𝑖).                                                                                                        

 

Then, we have 

 

𝐽(𝑥(0), 𝑟0) ≤ 𝔼[𝑥𝑇(0)𝑋(𝑟0)𝑥(0) | 𝑟0 = 𝑖] =  𝐓𝐫[𝑋(𝑟0)]. (20) 

 
Let us now consider the minimization problem of the cost bound of (20). If the following conditions hold 

i. [𝐴(𝑖) + 𝐵(𝑖)𝐾(𝑖),  𝐴𝑝(𝑖) | 𝐼𝑛] is stochastically detectable. 

ii. (𝐴(𝑖) + 𝐵(𝑖)𝐾(𝑖),  𝐴𝑝(𝑖)) is stable. 

and 𝑣𝑖
∗ is a local minimum that satisfies the constraint qualification, then there exist unique positive definite solutions 

𝐆∗ > 0, 𝐗∗ > 0, 𝐊∗ and 𝜇𝑖
∗ such that the following cross-coupled stochastic algebraic Riccati equations (CSAREs) are 

satisfied. 

 

𝛯𝑖(𝐗∗, 𝐾∗(𝑖), 𝜇𝑖
∗) = 0,  (21a) 

𝛤𝑖(𝐺∗(𝑖), 𝑋∗(𝑖), 𝐾∗(𝑖), 𝜇𝑖
∗) = 0,  (21b) 

𝛷𝑖(𝐺∗(𝑖), 𝑋∗(𝑖), 𝐾∗(𝑖), 𝜇𝑖
∗) = 0,  (21c) 

𝑣𝑖
∗ = ([vec 𝐺∗(𝑖)]𝑇 , [vec 𝑋∗(𝑖)]𝑇 , [vec 𝐾∗(𝑖)]𝑇 , 𝜇𝑖

∗)𝑇 ,  (21d) 
where 

𝛤𝑖(𝐺(𝑖), 𝑋(𝑖), 𝐾(𝑖), 𝜇𝑖)                                                                                                                                                                 

≔ [𝐴(𝑖) + 𝐵(𝑖)𝐾(𝑖)]𝐺(𝑖) + 𝐺(𝑖)[𝐴(𝑖) + 𝐵(𝑖)𝐾(𝑖)]𝑇 + 𝜇𝑖[𝐷(𝑖)𝐷𝑇(𝑖)𝑋(𝑖)𝐺(𝑖) + 𝐺(𝑖)𝑋(𝑖)𝐷(𝑖)𝐷𝑇(𝑖)]

+ ∑ 𝜋𝑗𝑖

𝑠

𝑗=1

𝐺(𝑗) + 𝐴𝑝(𝑖)𝐺(𝑖)𝐴𝑝
𝑇(𝑖) + 𝐼𝑛,                                                                                                                

𝛷𝑖(𝐺(𝑖), 𝑋(𝑖), 𝐾(𝑖), 𝜇𝑖)                                                                                                                                                                

 

≔ 𝐓𝐫 [𝐷𝑇(𝑖)𝑋(𝑖)𝐺(𝑖)𝑋(𝑖)𝐷(𝑖)] − 𝜇𝑖
−2𝐓𝐫 [[𝐸𝑎(𝑖) + 𝐸𝑏(𝑖)𝐾(𝑖)]𝐺(𝑖)[𝐸𝑎(𝑖) + 𝐸𝑏(𝑖)𝐾(𝑖)]𝑇].        

In other words, let 𝑣𝑖
∗ be the solution set that gives a local minimum. Then the controls are given by 

 

𝑢(𝑡) = 𝑢opt(𝑡) = ∑ 𝐾∗

𝑠

𝑖=1

(𝑖)𝑥(𝑡)𝜒𝑟𝑡=𝑖, (22) 

 

where 

𝐾∗(𝑖) = −[𝑅(𝑖) + 𝜇𝑖
∗𝐸𝑏

𝑇(𝑖)𝐸𝑏(𝑖)]−1[𝐵𝑇(𝑖)𝑋(𝑖) + 𝜇𝑖
∗𝐸𝑏

𝑇(𝑖)𝐸𝑎(𝑖)]. 
Furthermore, the minimization of the cost bound under the feedback controls (22) is attained, and the CSAREs (21) hold. 

That is, 

 

min
𝑋(𝑟0)

𝐓𝐫 [𝑋(𝑟0)] = 𝐓𝐫 [𝑋∗(𝑟0)]. (23) 
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Proof: The first part of Theorem 2 can be proved using techniques similar to those of Theorem 1. Therefore, this part will 

be omitted. The rest of the proof can be completed using the Karush-Kuhn-Tucker condition [11]. The minimization 

problem of the cost bound (20) subject to constraint (19) can be modified as follows. Let us consider the Lagrangian 𝐿. 

 

𝐿 = 𝐿(𝐆, 𝐗, 𝐊, 𝜇𝑖) = 𝐓𝐫  [𝑋(𝑖)] + ∑  𝐓𝐫 [𝐺(𝑗)𝛯𝑗(𝐗, 𝐾(𝑗), 𝜇𝑗)]

𝑠

𝑗=1

 , (24) 

 
where 𝑟0 = 𝑖, 𝐺(𝑖) is the symmetric matrix of Lagrange multipliers. 

It is clear that 𝐓𝐫  [𝑋(𝑖)] and 𝛯𝑖(𝐗, 𝐾(𝑗), 𝜇𝑗) are continuously differentiable at the point 𝑣𝑖
∗ . Using the KKT 

conditions, we have 

 
𝛯𝑖(𝐗, 𝐾(𝑖), 𝜇𝑖) ≤  0,  𝐺(𝑖) ≥ 0,  𝐺(𝑖)𝛯𝑖(𝐗, 𝐾(𝑖), 𝜇𝑖) = 0,                                            

𝜕𝐿

𝜕𝑋(𝑖)
= 𝛤𝑖(𝐺(𝑖), 𝑋(𝑖), 𝐾(𝑖), 𝜇𝑖) = 0,                                                                              

𝜕𝐿

𝜕𝐾(𝑖)
= 2(𝐵𝑇(𝑖)𝑋(𝑖) + 𝜇𝑖𝐸𝑏

𝑇(𝑖)𝐸𝑎(𝑖) + [𝑅(𝑖) + 𝜇𝑖𝐸𝑏
𝑇(𝑖)𝐸𝑏(𝑖)]𝐾(𝑖))𝐺(𝑖) = 0,

𝜕𝐿

𝜕𝜇𝑖
= 𝛷𝑖(𝐺(𝑖), 𝑋(𝑖), 𝐾(𝑖), 𝜇𝑖).                                                                                     

 

(25a) 

(25b) 

(25c) 

(25d) 

 

Applying conditions i and ii to the generalized cross-coupled stochastic Sylvester equations (GCCSSEs) (25b), it 

immediately follows that they have a unique positive definite solution 𝐺∗(𝑖) > 0. Hence, from equation (25c), we can 

derive the controls (22). From equation (25a), we know that 𝛯𝑖(𝐗∗, 𝐾∗(𝑖), 𝜇𝑖
∗) = 0 since 𝐺∗(𝑖) > 0. From the remaining 

equation, (25d) holds. This completes the proof of Theorem 2.                                                       ∎ 

In the next section, we study the Pareto optimal control problem for a class of UMJLSSs with multiple decision 

makers. 

 

3. Pareto Optimal Control Strategy 
We consider the following UMJLSS with 𝑁-decision makers and the cost functions. 

 

𝑑𝑥(𝑡) = ([𝐴(𝑟𝑡) + 𝐷(𝑟𝑡)𝐹(𝑟𝑡, 𝑡)𝐸𝑎(𝑟𝑡)]𝑥(𝑡) + ∑[

𝑁

𝑘=1

𝐵𝑘(𝑟𝑡)𝑢(𝑡) + 𝐷(𝑟𝑡)𝐹(𝑟𝑡, 𝑡)𝐸𝑏𝑘(𝑟𝑡)]𝑢𝑘(𝑡)])           𝑡

× 𝑥(𝑡)𝑑𝑡 + 𝐴𝑝(𝑟𝑡)𝑥(𝑡)𝑑𝑤(𝑡),                                                                                                                     

𝐽𝑘(𝑥(0), 𝑟0) = 𝔼 [∫ 𝑥𝑇
∞

0

(𝑡)[𝑄𝑘(𝑟𝑡) + 𝐾𝑘
𝑇(𝑟𝑡)𝑅𝑘(𝑟𝑡)𝐾𝑘(𝑟𝑡)]𝑥(𝑡)𝑑𝑡| 𝑟0 = 𝑖],                                                    

 

 

(26a) 

 

 

(26b) 

 

where 𝑄𝑘(𝑟𝑡) = 𝑄𝑘
𝑇(𝑟𝑡) ≥ 0 and 𝑅𝑘(𝑟𝑡) = 𝑅𝑘

𝑇(𝑟𝑡) > 0. Moreover, the coefficients 𝐁𝑘 ∈ 𝕄𝑛,𝑚
𝑠  with 𝐵𝑘(𝑖) and 𝐸𝑏𝑘(𝑖), 

𝑖 ∈ 𝒟 being constant matrices of compatible dimensions. A Pareto solution is a set (𝐮1,  . . .  , 𝐮𝑁), which minimizes 

 

𝐽(𝐮1,   . . .   , 𝐮𝑁 , 𝑥(0), 𝑟0) = ∑ 𝛾𝑘

𝑁

𝑘=1

𝐽𝑘(𝑥(0), 𝑟0),  0 < 𝛾𝑘 < 1, ∑ 𝛾𝑘

𝑁

𝑘=1

= 1, (27) 

 

for some 𝛾𝑘, 𝑘 = 1,  . . .  , 𝑁 [12]. Without loss of generality, the strategies are restricted as follows: 
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𝑢𝑘(𝑡) = ∑ 𝐾𝑘

𝑠

𝑖=1

(𝑖)𝑥(𝑡)𝜒𝑟𝑡=𝑖,  𝑘 = 1,  . . .   , 𝑁. (28) 

 
The definition of the Pareto optimal control for UMJLSS with multiple decision makers is given below. 

Definition 2. A linear feedback strategy expressed as (28) is said to be the Pareto optimal control with cost function (27) if 

the closed-loop system is EMSS, and the closed-loop value of (27) satisfies the bound 

 

𝐽(𝐮1,   . . .   , 𝐮𝑁 , 𝑥(0), 𝑟0) ≤ 𝐉. (29) 
 

for all admissible uncertainties. 

The aim of this paper is to introduce the Pareto optimal control strategies (28) for UMJLSS (26a) with multiple 

decision makers. 

 

3.1. Main Result 
Theorem 3. We consider the UMJLSS (26a) and the cost function (26b). We assume that there exist positive definite 

real symmetric matrices 𝑋(𝑖) = 𝑋𝑇(𝑖) > 0 and positive scalar parameters 𝜇𝑖 > 0, 𝑖 = 1,  . . .  , 𝑠 such that 

 

𝛬𝑖(𝐗, 𝐾1(𝑖), . . . , 𝐾𝑁(𝑖), 𝜇𝑖) ≤ 0,  𝑖 = 1,  . . .   , 𝑠, (30) 

 

where 

𝛬𝑖(𝐗, 𝐾1(𝑖), . . . , 𝐾𝑁(𝑖), 𝜇𝑖)                                                                                                                                        

: = 𝑋(𝑖) [𝐴(𝑖) + ∑ 𝐵𝑘

𝑁

𝑘=1

(𝑖)𝐾𝑘(𝑖)] + [𝐴(𝑖) + ∑ 𝐵𝑘

𝑁

𝑘=1

(𝑖)𝐾𝑘(𝑖)]

𝑇

𝑋(𝑖) + 𝜇𝑖𝑋(𝑖)𝐷(𝑖)𝐷𝑇(𝑖)𝑋(𝑖)           

+𝜇𝑖
−1 [𝐸𝑎(𝑖) + ∑ 𝐸𝑏𝑘

𝑁

𝑘=1

(𝑖)𝐾𝑘(𝑖)]

𝑇

[𝐸𝑎(𝑖) + ∑ 𝐸𝑏𝑘

𝑁

𝑘=1

(𝑖)𝐾𝑘(𝑖)] + ∑ 𝜋𝑖𝑗

𝑠

𝑗=1

𝑋(𝑗) + 𝐴𝑝
𝑇(𝑖)𝑋(𝑖)𝐴𝑝(𝑖)

+ ∑ 𝛾𝑘

𝑁

𝑘=1

[𝑄𝑘(𝑖) + 𝐾𝑘
𝑇(𝑖)𝑅𝑘(𝑖)𝐾𝑘(𝑖)].                                                                                                           

 

Then, we have 

 

𝐽(𝐮1,   . . .   , 𝐮𝑁 , 𝑥(0), 𝑟0) ≤ 𝐉 = 𝔼[𝑥𝑇(0)𝑋(𝑟0)𝑥(0) | 𝑟0 = 𝑖] = 𝐓𝐫  [𝑋(𝑟0)]. (31) 

 
Let us now consider the minimization problem of the cost bound of (31). If the following conditions hold 

i. [𝐴(𝑖) + ∑ 𝐵𝑘
𝑁
𝑘=1 (𝑖)𝐾𝑘(𝑖),  𝐴𝑝(𝑖) | 𝐼𝑛] is stochastically detectable. 

ii. (𝐴(𝑖) + ∑ 𝐵𝑘
𝑁
𝑘=1 (𝑖)𝐾𝑘(𝑖),  𝐴𝑝(𝑖)) is stable. 

and 𝑣𝑖
∗ is a local minimum that satisfies the constraint qualification, then there exist unique positive definite solutions 

𝐇∗ > 0, 𝐗∗ > 0, 𝐊𝑘
∗  and 𝜇𝑖

∗ such that the following CSAREs (32) are satisfied. 

 

𝛬𝑖(𝐗∗, 𝐾1
∗(𝑖), . . . , 𝐾𝑁

∗ (𝑖), 𝜇𝑖
∗) = 0,  (32a) 

𝛥𝑖(𝐇∗, 𝑋∗(𝑖), 𝐾1
∗(𝑖), . . . , 𝐾𝑁

∗ (𝑖), 𝜇𝑖
∗) = 0,  (32b) 
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𝛹𝑖(𝐻∗(𝑖), 𝑋∗(𝑖), 𝐾1
∗(𝑖), . . . , 𝐾𝑁

∗ (𝑖), 𝜇𝑖
∗) = 0,  (32c) 

𝑣𝑖
∗ = ([vec 𝐺∗(𝑖)]𝑇 , [vec 𝑋∗(𝑖)]𝑇 , [vec 𝐾1

∗(𝑖)]𝑇 , . . . , [vec 𝐾𝑁
∗ (𝑖)]𝑇 , 𝜇𝑖

∗)𝑇 ,  (32d) 
here 

𝛥𝑖(𝐇, 𝑋(𝑖), 𝐾1(𝑖), . . . , 𝐾𝑁(𝑖), 𝜇𝑖)                                                                                                                                             

: = [𝐴(𝑖) + ∑ 𝐵𝑘

𝑁

𝑘=1

(𝑖)𝐾𝑘(𝑖)] 𝐻(𝑖) + 𝐻(𝑖) [𝐴(𝑖) + ∑ 𝐵𝑘

𝑁

𝑘=1

(𝑖)𝐾𝑘(𝑖)]

𝑇

                                                                       

+𝜇𝑖[𝐷(𝑖)𝐷𝑇(𝑖)𝑋(𝑖)𝐻(𝑖) + 𝐻(𝑖)𝑋(𝑖)𝐷(𝑖)𝐷𝑇(𝑖)] + ∑ 𝜋𝑗𝑖

𝑠

𝑗=1

𝐻(𝑗) + 𝐴𝑝(𝑖)𝐻(𝑖)𝐴𝑝
𝑇(𝑖) + 𝐼𝑛,                           

                                                                                                                                       

 

 

𝛹𝑖(𝐻(𝑖), 𝑋(𝑖), 𝐾1(𝑖), . . . , 𝐾𝑁(𝑖), 𝜇𝑖)  

: = 𝐓𝐫 [𝐷𝑇(𝑖)𝑋(𝑖)𝐻(𝑖)𝑋(𝑖)𝐷(𝑖)] − 𝜇𝑖
−2𝐓𝐫  [[𝐸𝑎(𝑖) + ∑ 𝐸𝑏𝑘

𝑁

𝑘=1

(𝑖)𝐾𝑘(𝑖)] 𝐻(𝑖) [𝐸𝑎(𝑖) + ∑ 𝐸𝑏𝑘

𝑁

𝑘=1

(𝑖)𝐾𝑘(𝑖)]

𝑇

]. 

Namely, if 𝑣𝑖
∗ is the solution set that yields a local minimum, then the controls are given  

 

𝑢𝑘(𝑡) = 𝑢𝑘opt(𝑡) = ∑ 𝐾𝑘
∗

𝑠

𝑖=1

(𝑖)𝑥(𝑡)𝜒𝑟𝑡=𝑖, (33) 

where 

𝐵𝑘
𝑇(𝑖)𝑋∗(𝑖) + 𝜇𝑖

∗𝐸𝑏𝑘
𝑇 (𝑖)𝐸𝑎(𝑖) + 𝛾𝑖𝑅(𝑖)𝐾𝑘

∗(𝑖) + 𝜇𝑖
∗ ∑ 𝐸𝑏𝑘

𝑇

𝑁

𝑘=1

(𝑖)𝐸𝑏𝑘(𝑖)𝐾𝑘
∗(𝑖) = 0. 

Further, the minimization of the cost bound under the feedback controls (33) is attained, and (32) holds. That is, 

 

min
𝑋(𝑟0)

𝐓𝐫  [𝑋(𝑟0)] = 𝐓𝐫  [𝑋∗(𝑟0)]. (34) 

 
Proof: The proof of Theorem 3 can be completed using a technique similar to that in Theorem 2. Let us consider the 

Lagrangian 𝑀. 

𝑀 = 𝑀(𝐇, 𝐗, 𝐊1, . . . , 𝐊𝑁 , 𝜇𝑖) = 𝐓𝐫 [𝑋(𝑖)] + ∑ 𝐓𝐫 [𝐻(𝑗)𝛬𝑗(𝐗, 𝐾1(𝑗), . . . , 𝐾𝑁(𝑗), 𝜇𝑗)]

𝑠

𝑗=1

, (35) 

where 𝑟0 = 𝑖, 𝐻(𝑖) is the symmetric matrix of Lagrange multipliers. 

Using the KKT conditions, we have 

𝛬𝑖(𝐗, 𝐾1(𝑖), . . . , 𝐾𝑁(𝑖), 𝜇𝑖) ≤  0,  𝐻(𝑖) ≥ 0,  𝐻(𝑖)𝛬𝑖(𝐗, 𝐾1(𝑖), . . . , 𝐾𝑁(𝑖), 𝜇𝑖) = 0,                                  
𝜕𝑀

𝜕𝑋(𝑖)
= 𝛥𝑖(𝐻(𝑖), 𝐾1(𝑖), . . . , 𝐾𝑁(𝑖), 𝜇𝑖) = 0,                                                                                                  

𝜕𝑀

𝜕𝐾𝑘(𝑖)
= 2 (𝐵𝑘

𝑇(𝑖)𝑋∗(𝑖) + 𝜇𝑖𝐸𝑏𝑘
𝑇 (𝑖)𝐸𝑎(𝑖) + 𝛾𝑖𝑅(𝑖)𝐾𝑘(𝑖) + 𝜇𝑖 ∑ 𝐸𝑏𝑘

𝑇

𝑁

𝑘=1

(𝑖)𝐸𝑏𝑘(𝑖)𝐾𝑘(𝑖)) 𝐻(𝑖) = 0,

𝜕𝑀

𝜕𝜇𝑖
= 𝛹𝑖(𝐻(𝑖), 𝑋(𝑖), 𝐾𝑘(𝑖), . . . , 𝐾𝑁(𝑖), 𝜇𝑖).                                                                                                

 

(36a) 

(36b) 

(36c) 

(36d) 
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By using arguments as in the proof of Theorem 2, we can prove Theorem 3.                                                       ∎ 

 

4. Numerical Example 
Considering the following coefficient matrices in the UMJLSS (26), where it is assumed that the UMJLSS has three 

decision makers. 

𝐴(1) = [
−2 1
0 −2

] , 𝐴𝑝(1) = [
0.24 0

−0.87 0.2
] ,  𝐵1(1) = [

1
1

] , 𝐵2(1) = [
1

0.5
] ,  𝐵3(1) = [

0
1

],                                     

𝐴(2) = [
−2 1
1 −1

] , 𝐴𝑝(2) = [
−0.24 0

1 0.2
] , 𝐵1(2) = [

0.5
1

] , 𝐵2(2) = [
1

−0.5
] ,  𝐵3(2) = [

0.5
1

],                           

𝐷(1) = [
0

0.1
] ,  𝐷(2) = [

0
0.2

] ,  𝐸𝑎(1) = 𝐸𝑎(2) = [0.01 0.01],                                                                                      

𝐸𝑏1(1) = 𝐸𝑏1(2) = 0.01, 𝐸𝑏2(1) = 𝐸𝑏2(2) = 0.02, 𝐸𝑏3(1) = 𝐸𝑏3(2) = 0.03,                                                             

    𝑥(0) = [1 −0.5]𝑇 ,  𝛾1 = 0.5, 𝛾2 = 𝛾3 = 0.25,                                                                                                                  

𝑄1(1) = 𝑄1(2) = 𝐼2,  𝑄2(1) = 𝑄2(2) = 2𝐼2,  𝑄3(1) = 𝑄3(2) = 3𝐼2,                                                                               

𝑅1(1) = 𝑅1(2) = 𝑅2(1) = 𝑅2(2) = 𝑅3(1) = 𝑅3(2) = 1.                                                                                                  

 

By using the recursion given using the design procedure, the set of solutions are obtained 

𝑃(1) = [
3.8289e − 1 8.3465e − 2
8.3465e − 2 4.1783e − 1

] ,  𝑃(2) = [
4.0930e − 1 1.4887e − 1
1.4887e − 1 4.6348e − 1

],               

𝑆(1) = [
1.9490e − 1 4.8546e − 2
4.8546e − 2 2.4436e − 1

] ,  𝑆(2) = [
2.0542e − 1 2.3014e − 2
2.3014e − 2 1.4977e − 1

],               

𝐾1(1) = [−2.7920e − 1 −2.6833e − 1], 𝐾1(2) = [   5.2598e − 2 −7.2742e − 1],

𝐾2(1) = [−9.3558e − 1 −1.5774e − 2],  𝐾2(2) = [−6.2710e − 1    8.4923e − 1],

𝐾3(1) = [   9.6929e − 1 −2.0301e − 1], 𝐾3(2) = [−8.5428e − 1 −1.1314],          
𝜇1 = 3.6153e − 1, 𝜇2 = 3.5877e − 1.                                                                                  

 

 

5. Conclusion 
In this study, the Pareto optimal control problem for UMJLSS with multiple decision makers was investigated. 

Necessary conditions for the existence of a Pareto strategy set that consist of CSAREs were derived by means of KKT 

conditions. Consequently, it was shown that the Pareto optimal strategy set can be constructed by solving the CSAREs. 
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