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Abstract - We reviewed the dynamic modeling of a permanent magnet synchronous motor (PMSM) and proposed a rotor angle 

position control method with an error constraint for the PMSM. To guarantee the tolerance of the position tracking error, a 

backstepping controller is proposed using the barrier Lyapunov function. In addition, closed-loop stability of the proposed method is 

analyzed using the Lyapunov theorem. 
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1. Introduction 
Permanent magnet synchronous motors (PMSMs) are receiving increasing attention for electric drive applications such 

as computer peripherals, robotics, adjustable speed drives and electric vehicles. Based on the characteristics of the model 

of PMSMs, many modern and intelligent control methods have been applied to PMSMs. These include nonlinear and 

sliding mode controllers developed to address the speed and position control of PMSMs. Backstepping control is a newly 

developed technique for the control of uncertain nonlinear systems, particularly those systems that do not satisfy matching 

conditions [1], and its applications have been proposed [2]. Recently, the barrier Lyapunov function was applied to the 

backstepping control for output constraints [3] and its applications for various systems have been proposed [4, 5]. This 

method has the advantage that the control performance of the PMSM can be improved and the control gain can be easily 

tuned even in the presence of some load fluctuation or system uncertainty. In this study, a position control method with an 

error constraint is designed for the PMSM. In addition, closed-loop stability of the proposed method is analyzed using the 

Lyapunov theorem. 

 

2. Mathematical Modeling 
The mathematical model of a PMSM is described as follows: [6] 

 

 

 
(1) 

 

where va, vb, vc are voltages applied on stator phases a, b, and c, respectively, ia, ib, ic are phase currents, ea, eb, ec are 

back EMF voltages, Rs = Ra = Rb = Rc are stator phase resistances, La, Lb, Lc are phase self inductances and Lba, Lca, Lcb are 

mutual inductances. The back EMF voltage waveforms are expressed by the equation: 

 

 

 

(2) 

 

where Фa, Фb, Фc are the stator magnetic fluxes of the motor phases a, b, and c, respectively. As the motor windings 

are star connected, the next relationship is valid: 

 

mailto:Third.unchol@kitech.re.kr


 

111-2 

  (3) 

 

Assuming that there is no change in the rotor reluctance with the angular position, 

 

  (4) 

 

Taking into consideration (4), the equation (1) is rearranged as follows: 

 

 

 

(5) 

 

where Ls = L − M is the stator phase inductance. Hence, the mathematical model of a PMSM is similar to that of a wound 

rotor synchronous motor. The following assumptions are made in the derivation: 1) Saturation is neglected although it can 

be taken into account by parameter changes; 2) The back EMF is sinusoidal; 3) Eddy currents and hysteresis losses are 

negligible, and 4) There are no field current dynamics. With these assumptions the stator d, q equations in the rotor 

reference frame of the PMSM can be expressed as follows: 

 

 

 

(6) 

 

where vd and vq are the d and q axes components of the voltages of the stator [V], respectively, id and iq are the d and q axes 

components of the stator current [A], respectively, Rs is the resistance of the stator [W], λd = Ldid +λm and λq = Lqiq are d and 

q axes components of the flux produced by the permanent magnet [Wb], respectively, λm is the magnet mutual flux linkage, 

and ωr is the electrical rotor speed [rad/s]. In (6), vd and vq are obtained from voltages applied on stator phases va, vb, vc 

through the Park transform [7, 8]. 

The electric torque τe is given by 

 

 

 
(7) 

 

where pp is the number of pole pairs. The mechanical dynamics equations are as follows: 

 

 

 
(8) 

 

where J is the total inertia referred to the respective motor shaft, B is the viscous damping coefficient and τL is the load 

torque of the mechanical system. For constant flux operation when id equals zero, the electrictorque τe = 
2

3
 λmiq = Ktiq, 

where Kt is the motor torque constant. Note that this torque equation for the PMSM resembles that of the regular DC 

machine and hence provides ease of control. For a uniform airgap surfaced-mounted PMSM motor, the d- and q-axes 

inductances of the stator are equal, L = Ld = Lq. Thus the dynamic model of a surface-mounted PMSM can be described as 

follows: 

 



 

111-3 

 

 

(9) 

 

where θ is the rotor angle [rad], J is the moment of inertia [kg-m
2
], τL is the load torque [Nm], pp is the number of pole 

pairs, B is the damping coefficient [Nm/(rad/s)], and ud = vd and uq = vq are the d and q axes components of the voltages of 

the stator serving as the control variables [V]. 

The electrical rotor speed ωr is related to the mechanical rotor speed ωm by ωr = ppωm. 

 

3. Position Controller Design and Stability Analysis 
3.1. Controller Design 

We define the position tracking error z1 as z1 = θ − θd where θd is the desired position. The states of the closed-loop 

system, zcl are defined as zcl = [z1, z2, z3, z4]
T
 , where z2, z3 and z4 are defined in the following theorem. 

Theorem: Consider the dynamic model (9) of the PMSM, and |z1(0)| < kb. Suppose that the control law is given by 

 

 

 

(10) 

 

where k1, k2, k3 and k4 are the positive controller gains, and kb is the tolerance of the position tracking error of the 

constraint, |z0|<kb. If |z1(0)|<kb, then |z1(t)|<kb, Ɐt >0 and zcl(t) asymptotically converges to zero. 

 

3.2. Stability Analysis 
We use the beackstepping technique to prove the closed-loop stability of the proposed method using the barrier 

Lyapunov function. 

Step 1: Let us define the barrier Lyapunov candidate function V1 as follows: 

 

 

 

(11) 

 

where log(∙) is the natural logarithm function. The derivative of V1 with respect to time is given by 

 

 

 
(12) 

 

Substituting α1 with that in (10) results in 

 

 

 
(13) 
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Step 2: Let us define V2 as 

 

 

 
(14) 

Then 

 

 

 
(15) 

 

With α2, the time derivative of V2 becomes 

 

 
 

(16) 

 

Final step: We defined the overall Lyapunov candidate function Vblf  as 

 

 

 
(17) 

 

We then obtain V̇3 as 

 

 

 

(18) 

 

With the control input ud and uq, V̇blf can be written as 

 

 
 

(19) 

 

Thus, if |z1(0)| < kb, then |z1(t)| < kb, Ɐt > 0 and zcl(t) asymptotically converges to zero. 

 

4. Conclusion 
We reviewed the dynamic modeling of the permanent magnet synchronous motor. The rotor angle position control 

method with error constraint is designed, and the closed-loop stability of the proposed method is studied using the 

Lyapunov theorem. 
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