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Abstract - In this paper, a model-free sliding mode control technique for linear and nonlinear uncertain multi-input multi-output 

(MIMO) systems is proposed. The developed method does not require a mathematical model of the dynamic system. Instead, the 

controller relies on state measurements and estimates of the error between previous and current control inputs to stabilize the system. 

Knowledge of the system’s order, shape of the control input matrix, and control gain bounds, if non-unitary, are the only variables 

required to develop the controller. Lyapunov’s stability criterion is used in the derivation process to ensure closed-loop asymptotic 

stability. High frequency chattering, often observed with the sliding mode control method, is eliminated using a smoothing boundary 

layer. Simulations are performed on a nonlinear two mass-spring-damper system and a quadrotor model to examine the performance of 

the proposed control law. 
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1. Introduction 
In nonlinear control theory, sliding mode control is a robust control system capable of handling systems with 

modelling inaccuracies and outside disturbances. This technique is able to achieve perfect tracking in any system by 

reducing the tracking problem to a 1
st
-order stabilization problem [1]. In order to handle the uncertainties and disturbances 

that are present, a discontinuous term is introduced in the control input formulation. However, as a side effect of doing so, 

high frequency chattering of the control effort occurs. This undesirable phenomenon is resolved by introducing a 

smoothing boundary layer, while still achieving perfect control, and stability in the Lyapunov sense. 

Due to its robustness, various sliding mode control (SMC) schemes have been developed for different applications. 

Runcharoon et al. [2] designed a PD controller for position and altitude control of a quadrotor, and combined that with 

SMC of the Euler angles. Xu et al. [3] proposed an approach to stabilize underactuated systems, systems with fewer inputs 

that outputs, using SMC. The system is transformed into cascade normal form, utilizing a systematic method proposed by 

Olfati-Saber [4], before being used in the design of the controller. The developed method was simulated on both a 

translational oscillator with rotational actuator (TORA) system and a quadrotor model. 

The main hurdle to using SMC in controlling complex systems is the requirement of a well-defined mathematical 

model describing the behaviour of the system. Therefore, several researchers have investigated various types of model-free 

SMC in order to simplify the process. Munoz-Vazquez et al. [5] introduced a model-free integral SMC in combination with 

a passive velocity field (VF) to control a quadrotor. The VF was used to establish the desired path for the quadrotor in a 

certain environment, and the model-free integral SMC was used to drive the quadrotor to the desired path. Crassidis and 

Mizov [6 developed a model-free sliding mode controller which relies only on previous control inputs and state 

measurements to drive a system’s states towards the desired trajectory. Crassidis and Reis [7] derived a similar controller 

to that introduced by Crassidis and Mizov in [6], but employed a different approach towards the formulation of the control 

input, while also requiring only previous control input and state measurements. The method was applied to linear and 

nonlinear single-input single-output (SISO) systems, with the presence of measurement noise. 

The main contribution of this paper is to extend the work done by Crassidis and Reis in [7] into applications on MIMO 

systems, both fully-actuated and underactuated. The only characteristics of the system required to be known are the order 

of the system, shape of the input matrix, and an estimate of the control input gain bounds. The outline of this paper is as 

follows; following the introduction in Section 1, Section 2 will describe the system under control and introduce the sliding 
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surface. Section 3 will develop the control law. Finally, Section 4 will simulate the controller on two 2
nd

-order 

nonlinear MIMO systems. 

 

2. System Description 
Consider the following n

th
-order autonomous system: 

  

𝑥𝑝
𝑛 = 𝑓𝑝(𝑥; 𝑡) + [𝐵(𝑥; 𝑡)]𝑝𝑚𝑢𝑚 (1) 

  

where 𝑝 and 𝑚 are the # of outputs and inputs, respectively, 𝑥 is the system states, 𝑓(𝑥; 𝑡) defines the equations 

in 𝑥 and 𝑡, 𝐵(𝑥; 𝑡) is a 𝑝 ∗ 𝑚 matrix of control input gains, and 𝑢 is the control input. 

The system is redefined to the following: 

 

𝑥𝑝
𝑛 = 𝑥𝑝

𝑛 + [𝐵]𝑢𝑚 − [𝐵]𝑢𝑚𝑘−1
− [𝐵]𝑢𝑚 + [𝐵]𝑢𝑚𝑘−1

 (2) 

  

where 𝑢𝑚𝑘−1
 is the previous control input. An error parameter, 𝜀, describing the error between the current 

control input 𝑢𝑚 and the previous control input 𝑢𝑚𝑘−1
 is defined as:  

 

𝜀𝑚 = 𝑢𝑚𝑘−1 − 𝑢𝑚 (3) 

  

In order to compute the control law without encountering an algebraic loop throughout the simulation, an estimate 

of the control input error is defined as: 

 

𝜀�̂� = 𝑢𝑚𝑘−1 − 𝑢𝑚𝑘−2 (4) 

  

where 𝑢𝑚𝑘−2
 is the previous control input of the previous control input. The control input error, although not 

exactly known, is assumed to be bounded by the following inequality: 

 

(1 − 𝜎𝑙)𝜀�̂� ≤ 𝜀�̂� ≤ (1 + 𝜎𝑢)𝜀�̂� (5) 

  

where 𝜎𝑙 and 𝜎𝑢 are the lower and upper bounds, respectively, of the control input error estimate. At high 

sampling times, the error estimate will equal the actual error, thus the bounds will be approximately zero. 

 

2.1. Sliding Surface 
The sliding surface, as defined by Slotine et al. in [1], and extended into MIMO applications, is as follows:  

 

𝑠𝑚 = (𝑑 𝑑𝑡 + 𝜆)⁄ 𝑛−1
�̃�𝑝(𝑡) (6) 

  

where 𝜆 is a strictly positive constant, defining the slope of the sliding surface, and �̃�𝑝(𝑡) is the tracking error, 

�̃�𝑝(𝑡) = 𝑥𝑝(𝑡) − 𝑥𝑝𝑑
(𝑡). 

Thus an n
th
-order system has been reduced to 1

st
-order problem of keeping the scalar 𝑠𝑚 at zero, for all input and 

output paths. 

In order to ensure that the system’s states remain asymptotically stable during the reaching phase, while the 

controller drives the states towards the sliding surface, Lyapunov’s direct method, describing a stable system as one 

with a decaying energy rate, will be used. The energy of the system will be defined using the following equation:  

 

𝑉(𝑥) = (1 2⁄ )𝑠2 (7) 

  

which is positive definite for all values of 𝑠. The rate of energy is obtained as:  
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�̇�(𝑥) = 𝑠�̇� ≤ 0 (8) 

  

Eq. (8) is then redefined as:  

 

�̇�(𝑥) = −𝜂|𝑠| ≤ 0 (9) 

  

where 𝜂 is a small positive constant, therefore negative-definiteness of Eq. (9) is guaranteed, and the closed-loop 

system is asymptotically stable. 

 

3. Model-free Sliding Mode Controller 
The model-free sliding mode controller requires a set of assumptions to be satisfied in order to proceed with the 

derivation of the control law. All system states must be both observable and controllable, since the controller relies on state 

measurements to drive the system towards the desired trajectories. Additionally, if the control input is not generated 

digitally, by a computer or microprocessor, it is assumed that it is measureable, to be used in the control law. Since both 

systems to be illustrated in a later section are 2
nd

-order, a 2
nd

-order sliding surface will be derived. 

 
3.1. Control Law for SISO and Square MIMO Systems 

 The control law is obtained by differentiating Eq. (6) with respect to time and setting the equation to zero, to ensure 

states will remain on the surface once reaching it. For a 2
nd

-order system, this results in:  

 

�̇�𝑚 = �̈̃�𝑝 + 𝜆�̇̃�𝑝 = (�̈�𝑝 − �̈�𝑑𝑝
) + 𝜆 (�̇�𝑝 − �̇�𝑑𝑝

) = 0 (10) 

  

Substituting in Eq. (2) into Eq. (10) and solving for the control input results in the following:  

 

𝑢𝑚 = [𝐵]−1 [−𝜆 (�̇�𝑝 − �̇�𝑑𝑝
) − (�̈�𝑝 − �̈�𝑑𝑝

)] + 𝑢𝑚𝑘−1
− 𝜀𝑚 (11) 

  

In order to assure robustness of the controller against system uncertainties, a discontinuous term is added to the control 

input in Eq. (11) :  

 

𝑢𝑚 = [𝐵]−1 [−𝜆 (�̇�𝑝 − �̇�𝑑𝑝
) − (�̈�𝑝 − �̈�𝑑𝑝

) − 𝜂𝑠𝑔𝑛(𝑠𝑚)] + 𝑢𝑚𝑘−1
− 𝜀𝑚 (12) 

  

where 𝑠𝑔𝑛(𝑠) is the signum function. 

Another clear constraint for Eq. (12) lies in the inverse of the control input gain matrix term, [𝐵]−1. To be able to 

compute the control input, the gain matrix needs to be invertible. However, this is only satisfied when the # of inputs 

equals the # of outputs, in fully-actuated systems, in which case the application of the model-free sliding mode control 

becomes similar to that proposed by Crassdis and Reis in [7].  

 

3.2. Control Law for Underactuated MIMO Systems 
Therefore, in order to handle underactuated, the following transformation is proposed:  

 

𝑌𝑚 = [𝑇]𝑥𝑝 (13) 

  

where 𝑌𝑚 represents the states of the new coordinate system, [𝑇] is the transformation matrix, whose dimensions are 

equal to [𝐵]′. By using Eq. (13), the following updated invertible control input equation is obtained:  

 

𝑢𝑦𝑚
= [[𝑇][𝐵]]−1 [−𝜆(�̇�𝑚 − �̇�𝑑𝑚

) − (�̈�𝑚 − �̈�𝑑𝑚
) − 𝜂𝑠𝑔𝑛(𝑠𝑦𝑚

)] + 𝑢𝑦𝑚𝑘−1
− 𝜀𝑦𝑚

 (14) 
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where 𝑢𝑦𝑚
, 𝑠𝑦𝑚

, 𝜀𝑦𝑚
 are the control input matrix, sliding surface, and the control input error in the new 

coordinate system, respectively. All 𝑦 terms are obtained using Eq. (13), and 𝑢𝑦𝑚
= [𝑇]′𝑢𝑚. 

In the cases of non-unitary control input gains, although the exact gain values are not required,  an estimate of 

the bounds of the control input gains on all I/O paths are. 

 

3.3. Switching Gain 
Eq. (14) is redefined as:  

 

�̂�𝑦𝑚
= [[𝑇][�̂�]]−1 [−𝜆(�̇�𝑚 − �̇�𝑑𝑚

) − (�̈�𝑚 − �̈�𝑑𝑚
) − 𝐾𝑚𝑠𝑔𝑛(𝑠𝑦𝑚

)] + 𝑢𝑦𝑚𝑘−1
− �̂�𝑦𝑚

 (15) 

  

 

 where [�̂�] is the control input gain estimate matrix, computed using the equation �̂� = √𝑏𝑢𝑝𝑝𝑒𝑟 . 𝑏𝑙𝑜𝑤𝑒𝑟, and 𝐾𝑚 

is the switching gain. To ensure close-loop stability during the reaching phase, the sliding condition in Eq. (8) is 

combined with Eq. (9): 

 

𝑠𝑚�̇�𝑚 ≤ −𝜂|𝑠𝑚| (16) 

  

Using Eq. (16), the switching gain for a 2
nd

-order system is obtained as follows:  

 

𝐾𝑚 =  |𝛽 − 1||�̈�𝑚 − �̈�𝑑𝑚
| +  𝜆|𝛽 − 1||�̇�𝑚 − �̇�𝑑𝑚

| + |�̂�(𝜎𝑢 (𝜀�̂�𝑚
))| + 𝛽𝜂 (17) 

  

where 𝛽 = √𝑏𝑢𝑝𝑝𝑒𝑟 𝑏𝑙𝑜𝑤𝑒𝑟⁄ . 

 

3.4. Boundary Layer 
Due to the discontinuity in the control law, high frequency chattering is observed in the controller. Therefore, a 

smoothing boundary layer, which acts as a low pass filter, is introduced. To assert the attractiveness of the boundary layer, 

Eq. (16) is updated to the following:  

 

|𝑠𝑚| ≥ 𝜑𝑚 →
1

2

𝑑

𝑑𝑡
𝑠𝑚

2 ≤ (�̇�𝑚 − 𝜂)|𝑠𝑚| (18) 

  

where 𝜑𝑚 is the boundary layer thickness. Eq. (18) guarantees that the distance to the boundary layer is always 

decreasing. The switching gain is then updated to include the boundary layer:  

 

𝐾𝑚 = 𝐾𝑚 − 𝜑𝑚 (19) 

  

which results in the following control law:  

 

�̂�𝑦𝑚
= [[𝑇][�̂�]]−1 [−𝜆(�̇�𝑚 − �̇�𝑑𝑚

) − (�̈�𝑚 − �̈�𝑑𝑚
) − 𝐾𝑚𝑠𝑎𝑡(𝑠𝑦𝑚

/𝜑𝑚)] + 2𝑢𝑦𝑚𝑘−1
− 𝑢𝑦𝑚𝑘−2

 (20) 

  

where 𝑠𝑎𝑡(𝑠𝑦𝑚
/𝜑𝑚) is the saturation function, defined as: :  

 

{
𝑠𝑎𝑡 (𝑠𝑦𝑚

/𝜑𝑚) = 𝑠𝑦𝑚
/𝜑𝑚                , 𝑖𝑓 |𝑠𝑦𝑚

/𝜑𝑚| ≤ 1

𝑠𝑎𝑡 (𝑠𝑦𝑚
/𝜑𝑚) =  𝑠𝑔𝑛(𝑠𝑦𝑚

/𝜑𝑚)    , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (21) 
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Finally, the time-varying boundary layer thickness is defined using the following differential equation:  

 

�̇�𝑚 +  𝜆𝜑𝑚 = 𝐾𝑚 (22) 

  

 where 𝜑𝑚(0) = 𝜂/𝜆. 

 

4. Simulation 
The developed model-free controller was simulated on a couple of nonlinear MIMO systems to illustrate its 

applicability. The first is a 2
nd

-order nonlinear 2 mass-spring-damper system with 1 input and 2 outputs. The second is the 

model of a quadrotor with 4 inputs and 6 outputs. 

All simulations were performed using Simulink and MATLAB, using the ode5 (Dormand-Price) solver, with a fixed 

sample time of 0.0001 seconds, and the controller parameters 𝜆 = 20, 𝜂 = 0.1 , and 𝜎𝑢 = 0.5. 

 

4.1. Nonlinear 2 Mass-Spring-Damper System 
The 2 mass-spring-damper system with nonlinear elasticity has the following mathematical model:  

 

𝑚1�̈�1 = 𝑘2(𝑥2 − 𝑥1) − 𝑏2(𝑥2 − 𝑥1)3 + 𝑐2(�̇�2 − �̇�1) − 𝑘1𝑥1 + 𝑏1𝑥1
3 − 𝑐1�̇�1

𝑚2�̈�2 = 𝑢 − 𝑘2(𝑥2 − 𝑥1) + 𝑏2(𝑥2 − 𝑥1)3 − 𝑐2(�̇�2 − �̇�1)
 (23) 

  

where the masses are 𝑚1 = 10 kg & 𝑚2 = 20 kg, the spring constants are 𝑘1 = 3 N/m & 𝑘2 = 7 N/m, the spring 

stiffening coefficients are 𝑏1 = −1.5 N/m
3
 & 𝑏2 = −3 N/m

3
, meaning the springs become increasingly stiffer as they are 

elongated, the damping coefficients are  𝑐1 = 5 N/m.s
-1

 & 𝑐2 = 8 N/m.s
-1

, and 𝑢 is the control input acting on the second 

mass. 

The control input gain matrix is as follows:  

 

𝐵 = [
0

1 𝑚2⁄ ] (24) 

  

However, assuming the mass is not exactly known, an estimate for  𝑚2 is given an upper limit at 25 Kg and 15 Kg. 

The 𝑇 matrix is therefore given as: 

 

𝑇 = [
𝑇11

𝑇21
]

′

 (25) 

  

where 𝑇11 weighs 𝑥1 more heavily and 𝑇21 weighs 𝑥2. The desired signal was chosen to be 𝑥𝑑 = sin (𝜋𝑡 2)⁄ . The 

simulation was performed twice, once with 𝑇 = [1.25 0.02] and a second time with 𝑇 = [0.02 1.25], for 20 

seconds, and the following results were obtained: 

 

  
Fig. 1: Plots of 𝑥1 and 𝑥2 with the desired signal 𝑥𝑑. 
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Figure 1 shows the output of the system on both mass 1 and 2. As expected, with a 𝑇 = [1.25 0.02], 𝑥1 displays 

perfect tracking, since it is heavily weighted in comparison to 𝑥2, which does not track the desired signal. 

 

  
Fig. 2: Plots of 𝑥1 and 𝑥2 with the desired signal 𝑥𝑑. 

 

Figure 2 shows the output of the system on both mass 1 and 2 in case 2, where 𝑇 = [0.02 1.25]. Therefore, 𝑥2, 

being more heavily weighted, displays perfect tracking, while 𝑥1 does not. 

 

  
Fig. 3: Plots of 𝑢(𝑡). The left plot shows the control effort in case 1. The right plot shows case 2. 

 
Figure 3 shows the control effort in both cases. It is clear that since the control input acts on mass 2, there is a 

larger initial spike in the control effort in case 1. 

 

4.2. Simulation of Quadrotor Position Control 
The second simulation was performed on the model of a quadrotor, a 4-input 6-output system. The model-free 

controller was used to obtain perfect position tracking of the quadrotor in x-y-z. The mathematical model used was 

obtained from Xu et al. in [3], divided into two subsystems, a fully-actuated subsystem:  

 

[
�̈�
�̈�

] = [
𝑢1(𝑐𝑜𝑠𝜑𝑐𝑜𝑠𝜓) − 𝑔

𝑢4
] + [

−𝐾3�̇�/𝑚
−𝐾6�̇�/𝐼3

] (26) 

  

 and an underactuated subsystem:  
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[
�̈�
�̈�

] = [
𝑢1𝑐𝑜𝑠𝜑 𝑢1𝑠𝑖𝑛𝜑
𝑢1𝑠𝑖𝑛𝜑 −𝑢1𝑐𝑜𝑠𝜑

] [
𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜓

𝑠𝑖𝑛𝜓
] + [

−𝐾1�̇�/𝑚
−𝐾2�̇�/𝑚

]

[
�̈�
�̈�

] = [
𝑢2

𝑢3
] + [

−𝐾4�̇�/𝐼1

−𝐾5�̇�/𝐼2

]
 (27) 

  

where (𝑥, 𝑦, 𝑧) are the position coordinates, (𝜃, 𝜓, 𝜑) are the three Euler angles, representing pitch, roll, and yaw, 

respectively, 𝐾𝑖’s are drag coefficients, 𝑔 is the acceleration of gravity, 𝑙 is half the length of the quadrotor, and 𝐼𝑖’s are the 

moments of inertia with respect to each axis. 

The application of the model-free SMC system to the system in Eq. (28) is similar to that in [8], while the 𝑇 matrix in 

this case is a 2𝑥4 matrix. The table of parameters used is shown below, followed by the simulation results: 

 
Table 1: Parameters used in the simulation. 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 4: Plots the position of the quadrotor compared to the desired trajectory. 

 

 
Fig. 5: Plot of the altitude of the quadrotor on the left and heading on the right. 

System Parameters Desired Conditions 

𝐼1, 𝐼2 1.25 Ns
2
/rad 𝑥𝑑 1 m 

𝐼3 2.5 Ns
2
/rad 𝑦𝑑 1 m 

𝐾1, 𝐾2, 𝐾3 0.010 Ns/m 𝑧𝑑 3 m 

𝐾4, 𝐾5, 𝐾6 0.012 Ns/rad 𝜑𝑑 𝜋
3⁄  

𝑚 2 kg  

𝑙 0.2 m 

𝑔 9.8 m/s 
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Fig. 6: Plot of the pitch angle on the left and roll angle on the right. 

  
As shown in the figures above, the controller was able to provide perfect tracking of the desired trajectories. One thing 

to note though is that since the desired trajectory is the complete path from position 0 to 1 m in both 𝑥 and 𝑦, the controller 

is pretty aggressive in pitching and rolling the quadrotor, causing high frequency activity in both those terms, as shown in 

Figure 6. 

 
4. Conclusion 

A model-free sliding mode controller was proposed for MIMO systems. The focus of the paper was on underactuated 

MIMO systems, which typically represent most systems in practice. By using an algebraic transformation into a different 

coordinate matrix, the developed control law was applicable to underactuated systems, where elements of the 

transformation matrix weighted certain states more heavily than others. Finally, the controller was applied on two well-

known systems; a nonlinear 2 mass-spring-damper system with 1 input and a quadrotor model. 
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