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Abstract - This paper investigates the use of convolutional neural networks for the purpose of image foreground extraction from a 

dynamic environment. The proposed solution utilises the latest developments in image segmentation using pixel-wise classification to 

produce foreground target extraction for real-time operations. A collection of spacecraft images were assembled for network training 

and evaluation. The proposed technique takes advantage of transfer learning for the stable training of a convolutional neural network 

classifier. The image extraction software was applied to a thermal camera video, taken by an undocking spacecraft from the 

International Space Station. The results show the proposed deep learning-based image extraction has advantages over traditional 

background subtraction methods. This investigation provides evidence that semantic segmentation using convolutional neural network 

can be an effective tool for spacecraft image isolation and extraction from a dynamically cluttered scene.  
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1. Introduction 
Satellite robotic servicing depends on proximity sensors such as cameras and lidars for Guidance Navigation and 

Control (GNC). Camera systems are usually less expensive, lighter and less power intensive than their lidar counterparts. 

However, camera images are also less precise and less reliable partly due to sensor specifications, extreme lighting 

environments and a lack of image features from the scene. To this end, intelligent image recognition is an important area of 

research to accommodate these external and hardware shortcomings. This investigation focuses on the extraction of 

spacecraft image from a moving Earth background. Its main contribution is the adaptation and improvement of the latest 

methods in Convolutional Neural Network (CNN or ConvNets) for image classification and semantic segmentation of 

spacecrafts. Deep learning refers to a variety of deep neural networks capable of image analysis and other data processing 

applications [1]. ConvNets are a class of network models extending Fukushima’s neocognitron [2] that allows the network 

to organise into the hierarchy model of the visual nervous system. Early ConvNet models introduced by LeCun et al. [3] 

was unable to reach its full potentials due to computing limitations. Twenty-three years later, Krizhevsky et al. [4] finally 

demonstrated ConvNet’s superiority over non-network classifiers by training with millions of images using Graphic 

Processing Units (GPUs). Since then, Zeiler and Fergus [5] showed kernel weights learned on large datasets outperform 

hand-crafted ones and can be transferred to modified networks [6]. With the development of deeper [7, 8], and wider [9–

11] networks, ConvNets have become the engine of choice for image recognition, object localisation [12–14], and image 

segmentation [15–21]. This investigation evaluates applicable networks and latest techniques in ConvNet-based image 

segmentation to extract the target vehicle from a dynamic environment. This paper is organised as follows: Sec. 2 provides 

the related work on background subtraction, image classification and segmentation. Section 3 provides the proposed 

method and network models. Section 4 provides the datasets and metrics used for training and evaluation. Section 5 

provides the results and comparisons with other background subtraction techniques. Finally, Sec. 6 concludes this 

investigation. 
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2. Related Work 
Image-based GNC algorithms rely on analysing targets and landmarks. Extracting these regions from a cluttered 

background will save time and improve estimation quality by minimising falsehoods. A common method of obtaining 

regions of interest is by removing the background. This section discusses methods for background subtraction and the 

alternative approach of using semantically segmented image generated by ConvNets. 

 

2.1. Background Subtraction 
There have been several studies summarising background subtraction techniques [22, 23]. A simple and effective 

approach is to use a first order recursive filter by Heikkil¨a and Silv´en [24] (ADP) in the form of Bk+1 = (1 - α)Bk + αIk. 

where α is an adaptation coefficient, Bk is the adaptive background image and Ik is the incoming frame. The difference 

frame can be further processed by applying Otsu’s threshold [25]. This adaptive scheme allows distinction of active 

foreground pixels from inactive background ones. While such approach is simple and effective in distinguishing a static 

background, it falls short in a dynamic one. The OpenCV 3:2:0 library provides several other background subtraction 

functions, these are the MOG method based on an adaptive Gaussian Mixture Model (GMM) [26] and two enhancements 

to the GMM method by Zivkovic et al. denoted by MOG2 [27] and KNN [28]. Finally, GMG denotes a method by 

Godbehere [29] combining statistical background image estimation, per-pixel Bayesian segmentation, and an approximate 

solution to the multi-target tracking problem. 

 

2.2. CNN Image Classifiers 
A major milestone for ConvNets was reached when Krizhevsky’s AlexNet [4] significantly advanced classification 

accuracy on the Imagenet Large Scale Visual Recognition Challenge (ILSVRC)-2012 dataset [30]. Simonyan and 

Zisserman [7] increased network depth with the VGG model and demonstrated a 3 ˟ 3 receptive field is equivalent to a 

larger 7 ˟ 7 kernels when convolutional layers are increased. The smaller kernel reduces the number of parameters in the 

network allowing more convolutional layers, and the VGG results show large improvements over AlexNet on ILSVRC-

2012. Ronneberger et al. [17] presents a mirrored decoding network forming a U-shape network (UNet) to segment cell 

images. Variations to this approach are adapted by this study to segment International Space Station (ISS) images. 

Redmond et al. [31] used Darknet [31] in the You Only Look Once (YOLO) system for object localisation. Darknet is 

similar to VGG but it oscillates between convolutional kernels of one and three dimensions. AlexNet [4], UNet [17], VGG 

[7], and Darknet [31] are manageable networks that is the primary focus of this study. ConvNets have also widened for 

higher performance such as the inception modules in GoogLeNet [9]. State-of-the-art classifier network such as ResNet [8] 

increased network depth to 152-residual layers in comparison to the maximum 8-layers AlexNet, 19-layers VGG network 

and 22-layers GoogLeNet. Future work may merge more sophisticated networks such as Inception-ResNet [10] and Wide 

Residual Networks (WRN) [11] for improved performance.  

 

2.3. Image Segmentation 
Image segmentation is a core problem in computer vision, early image segmentation work investigated edge contours 

[32], colour [33] and texture based classification [34]. Recent investigations include optical flow [35], and salient object 

detection [36]. Semantic segmentation requires the assignment of labels to each individual pixels, these labels can be used 

to extract foreground objects as an alternative to background subtraction; consequently, ConvNets are well suited for this 

task [15–21]. The approach used in this study stems from a family of works under the Fully Convolutional Network (FCN) 

scheme first proposed by Long et al. [16, 37] and later improved upon by Ronneberger et al. [17] (UNet), Noh et al. [18] 

(DeconvNet), and Badrinarayanan et al. [19] (Segnet). The FCN approach uses a decoding network to generate an 

annotation map that assigns class labels to every image pixel. 

 

3. Model and Methods 
This study is carried out in two phases to achieve the final goal of spacecraft image extraction. In the first 

phase,severalnetwork models were compared on conventional image datasets and on a space image dataset. The purpose 

ofthis phase isto gain an understanding of the network behaviour; to tune the hyper parameters used by the network; to 

train an initial setof encoding weights and biases for the phase two study; and to measure network performance on object 

classification. Inthe second phase, three out of the five networks from phase one were selected to generate segmentation 

images. A mirrordecoding segment is added to the encoding network while the fully connected dense layers are 
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removed;the resulting networkbecomes a FCN. A set of ISS images with manual segmentation masks are used for training 

in the second phase. The encodingand decoding network generates the semantic segmentation map during inference and 

saves it to disk. The full training andevaluation pipeline are shown in Fig. 1. All networks were developed using 

TensorFlow 1:0:1 and Python 3:5:2. 

 

3.1. Phase 1: Image Classification 
Five network models were evaluated for their classification performance on conventional and space image. Namely, 

the networks are: AlexNet-5, AlexNet-8, UNet-8, VGG-19, and Darknet-21. The number after each network denotes the 

number of encoder convolutional and fully connected layers. All networks use the standard maxpooling method to 

downsample the feature map after each convolution groups. Batch normalisation [38] is applied after each convolutional 

layer followed by leaky Rectified Linear Units (ReLU) [39] activation functions using a slope of 0:2. Backpropagation is 

performed using stochastic gradient decent (SGD) with a initial learning rate of 0:1 (VGG and Darknet initial learning rate 

is 0:05) and learning rate decay of 0:1 after every 20_103 iterations. Dropout rate is set to 0:9, training and validation batch 

size is 128, and convolution stride is 1 unless otherwise 

 

 
Fig. 1: Training and evaluation pipeline. For details of the encoding network see Table 1. In the phase 1 study, the network is trained 

for single image classification. In the phase 2 study training process, the pretrained encoding network weights and biases including the 

batch normalisation parameters are transferred from phase 1. The encoder weights and biases are then frozen while phase 2 focuses 

training of the decoder filter weights, biases, and batch normalisation parameters. A batch of 128 images forms the input tensor and is 

fed through the FCN with labeled mask set as targets. Class for each pixel is generated and the final loss is the sum of all pixel 

classification losses. Feature map tensors from the first convolutional layer are skipped across from the encoder tobe concatenated with 

the decoder input to maintain structure. On inference evaluation, the FCN runs forward to generate the semantic segmentation map. 

 

specified. The detail architecture of each network is provided in Table 1. 

The original AlexNet [4] used ReLU [40] as activation functions instead of the traditional sigmoid function. It also 

used the drop-out [41] technique to minimise overfitting. In this implementation, Krizhevsky [4] splits the convolutional 

channels so they may run independently on two GPUs and he added Local Response Normalisation (LRN) to each 

convolutional layer for brightness normalisation. AlexNet-5 is a simplified version of the vanilla AlexNet, it contains only 

two convolutional layers and three fully connected dense layers with max pooling and LRN implemented after each 

convolutional layer. This lightweight structured network has low memory needs which makes it ideal in the testing and 

analysis of small datasets like CIFAR-10 [42]. AlexNet-8 is a modified AlexNet with batch normalisation and leaky ReLU 

activation incorporated into all convolutional layers. GPU specific convolutional layers and LRN were omitted in this 

network as they provide no added value to the design [7]. The five convolutional layers steps down the input image from 

120 × 120 to 30 × 30 to 15 × 15 to 8 × 8 using max pooling at the end of each convolutional layer groups. AlexNet-8 is the 

only network that uses a 4 pixel stride in the first convolutional layer resulting in the largest reduction of feature map 

dimensions after it. 
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Ronneberger et al. [17] presents a five group encoder-decoder FCN each with two convolutional layers and 

maxpooling at the end of each group for the first four groups. A modified three group UNet was developed for this study 

with only one convolutional layer in the first and last group to reduced memory, this resulted in 5 layers of convolutional 

layers with 3 fully connected layers, hence the designation of UNet-8. The UNet structure also takes advantage of skip 

layers to maintain feature map structure when generating the semantic segmentation map, more details on the full encoder-

decoder FCN shall be discussed in Sec. 5.2. VGG-19 [7] is one of the most popular networks used by the vision community 

in the past two years. Its size falls between AlexNet and GoogLeNet which allows it to enjoy sufficient accuracy and ease 

of use. The original VGG-19 is made from two groups of two convolutional layers with 64 and 128 channels, and three 

groups of four convolutional layers with 256, 512 and 512 channels. A modified version of VGG-19 was used in this study, 

the ConvNet channels were reduced to 16 – 32 – 64 – 128 – 256 for each ConvNet group respectively to reduced memory. 

The initial version of Darknet [31] consists of seven groups with 24 convolutional layers, it contains one convolutional 

layer in the first two groups and max pooling in the first four groups. The YOLO-9000 Darknet [14] is simplified to six 

groups with first five groups ending in max pooling. The YOLO system also contains one fully connected layer and one 

detection tensor. This detection tensor contains bounding box information and is used to localise objects in the image. The 

modified Darknet used in this study omits the detection layer and use the same fully connected dense layer structure as the 

previously defined networks. The Darknet was inspired by GoogLeNet [9], however, it replaces the inception modules 

with three to five alternating 1×1 and 3×3 kernels based on the network-in-network concept [43]. All the evaluated 

networks are connected to three fully connected dense layer at the end of the convolutional groups for classification. 

AlexNet-5, UNet-8, and VGG-19 using roughly 400 and 200 nodes for the first two layers while AlexNet-8 and Darknet-21 

using roughly 200 and 100 nodes.  
Due to the small datasets used in the training, the fully connected (FC) nodes was reduced by factor of 10 – 20 from 

the original networks. The number of nodes in the final SoftMax layer equals the total number of classes in the dataset. 

 
Table 1: Network architectures. The first three numbers represents height, width, and channel of each feature layer, -sign indicate 

Batch Normalisation (BN) and Leaky ReLU (LR) combination layers. +sign indicate BN, LR and Drop Out (DO) combination layers. 

Value after ”c” indicates square kernel size, value after ”s” indicates the stride, value after ”w” indicates the window size, FC indicates 

Fully Connected, LRN indicates Local Response Normalisation. 
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3.2. Phase 2: Image Segmentation 
Long et al. [16] demonstrated semantic segmentation map can be generated using trained FCN which only consists of 

convolutional layers of various shapes and channel depth. In addition to the encoder downsampling of the traditional 

classifier networks, these FCN also includes upsampling decoder layers. Both DeconvNet and Segnet use mirror image 

VGG as the decoder network. The same mirroring approach was followed by this investigation. Reverse max pooling can 

be achieved by restoring the forward max pooling coordinates in the upsampling layer. A more efficient approach is to let 

the strided convolution learn its own spatial upsample [44]. The proposed method also adapts the skip feature concept from 

UNet to allow structured generation [45]. Skip features are feature maps that ”skipped” across from the encoder side to 

concatenate with decoding map of roughly the same size. In the case where the input feature map does not match exactly 

with the decoder side input, the encoder side map is randomly cropped. This cropping, however, does not typically exceed 

ten pixels and is only one to two pixels in the deep channel layers. To train the FCN for semantic segmentation, pixel-wise 

class errors from the ground truth labels are summed as one loss value to be minimised during backpropagation. 

 

4. Experimental Data 
Two datasets were used to train and validate the selected networks, these are the CalTech-101 [46] and the Space-5 

dataset. The CalTech dataset consists of 102 category objects provided by 9;144 images of various sizes with a typical 

resolution of 300×200. For this study, 10 percent of the database was randomly selected for evaluation and the rest for 

training. The CalTech dataset is compact and easy to handle for classification validation, although it only provides one 

target object per image and is not effective for segmentation evaluation. Future studies may include dataset such Pascal 

VOC [47] or Cityscapes [48] to gain a generic quantitative measurement of the proposed networks; however, to apply a 

network to spacecraft segmentation even an ImageNet [30] trained network is insufficient and requires space vehicle 

specific images for transfer learning. 

 

4.1. Spacecraft Image Dataset 
While there are numerous datasets available for variety of studies, there is a lack of image dataset for space system 

development. For the purpose of this study, a new spacecraft image dataset called Space-5 was developed using a mixture 

of 4,237 synthetic and real images with five object categories: Earth (230 images), ISS (2,590 images), Spacecraft (193 

images), Envisat (301 images), and the RadarSat Model (RSM) (421 images). Sample images of each class category are 

provided in Fig. 2. Segmentation annotation is created for ISS and the Earth using manual image segmentation techniques. 

To evaluate target vehicle image extraction, a Neptec TRIDAR infrared (IR) video of the Space Shuttle STS-135 mission 

undocking sequence was used. In this sequence, the Space Shuttle performs a flyby of the ISS while imaging it with the 

rotating Earth in the background. For segmentation training and validation, the Space-5 dataset is further reduced to a 

subset of ISS and Earth (Space-2) images. Additional evaluation images were added to Space-2, including 10 Earth only 

images and 141 ISS only images from the STS-135 mission docking sequence. 

 

 
Fig. 2: Sample images from the Space-5 database. 

 

4.2. Segmentation Metric 
The standard Jaccard index, also known as Intersect over Union (IoU), was used to measure segmentation 

performance. The IoU for class i is defined as Ji = |xi∩yi|/|xi∪yi|, where x is the ground truth pixel labels and y is the 

predicted pixel labels. In terms of Receiver Operating Characteristics (ROC) [49], single class IoU is equivalent to Ji = 

TPi/(EPi +FNi) where TP is the true positive, and EP is the estimated positive which is the sum of TP and the false positive 

(FP). The false negative (FN) can be computed as the actual positive (AP) minus TP. The ROC accuracy, recall and 

precision metrics are defined respectively as Acryi = (TPi +TNi)/np, Rcali = TPi/APi, Preci = TPi/EPi, where np is the total 
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number of pixels in the image. The pixel accuracy defined by Long et al. [16] is equivalent to the ROC precision. In 

addition to the aforementioned metrics, the total and mean pixel accuracy, total and mean IoU, and frequency weighted IoU 

(Jfw) from Long et al. [16] are also computed. The total pixel accuracy is defined as Prec = ΣiTPi/ΣiEPi, the mean pixel 

accuracy is defined as Prec = ΣiPreci/nCL, where nCL is the total number of class objects. The mean IoU is J = ΣiJi/nCL and 

Jfw is defined as . Finally, the mean accuracy (Acry) and recall (Rcal) are averages over the number 

of classes.  

 

5. Results and Discussions 
This study was carried out in two phases. In the first phase, various networks were studied for their performance and 

behaviour using the CalTech-101 and Space-5/2 datasets. In the second phase, three networks were selected to perform 

semantic segmentation of the ISS image. The standard technique of random cropping, image flipping, brightness, 

saturation and contrast variation were applied on the training image to inflate the sample set and avoid overfitting. The 

input images were then normalised by pixel intensity, mean centered, and scaled to unit standard deviation. 

 

5.1. Phase 1: Image Classification 
Results of the network classification for the CalTech-101 and Space-5 dataset are provided in Table 2. The Space-2 

dataset validation resulted in 100 percent accuracy for all five networks. The CalTech-101 and Space-5/2 dataset training 

were all conducted with 60e3 batch iterations. Accuracy is lower for larger class datasets, this is partly due to the low 

number of images available for training. Zeiler [5] propose to train deep ConvNets on high volume datasets such as 

ImageNet to avoid overfitting and to better develop feature extraction filters. The effects of dropout on the convolutional 

layers was studied, results show applying dropouts only to fully connected layers resulted in roughly 4 percent increase in 

accuracy. In general, Darknet outperforms the other networks for all datasets. 

 

5.2. Phase 2: Image Segmentation 
While Darknet exhibited highest performance in the image classification task, it was more complex and memory 

intensive to construct a mirroring decoding network. By contrast, AlexNet-5 was too shallow; therefore, AlexNet-8, UNet-8 

 
Table 2: Classification Results.+sign indicate dropout added to convolutional layers. 

 

 
 

 
Fig. 3: Semantic segmentation of the ISS. Top: IR camera image, bottom: photo camera image. Left to right: original, ground truth 

(https://github.com/ai-automata/170627_CNN_Segmentation), AlexNet-8, UNet-8 and VGG-19. 

 

and VGG-19 were selected for the phase 2 validation. The encoder weights of phase 1 were trained to 60×10
3
 iterations 

(i.e. 2,727 epochs). All attempts to simultaneously train encoder and decoder network from zero initialisation resulted in 

instability. The convergence in phase 2 was much slower than Phase 1 partly due to a very small learning rate of 10
-8
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(UNet-8 learning rate was reduced to 0.5×10
-8

 at the mid-point of training to avoid instability). The learning rate magnitude 

must sustain a stable gradient, which in phase 2, is defined as the sum of all the pixel losses. Learning decay was omitted 

since the loss profile remains shallow but constant. All networks were trained for 600×10
3
 iterations (i.e. 27,273 epochs) 

on separate GPUs (CPU: AMD X8 FX-8350 (125W) 8-Core Sock at AM3+ 4GHz, GPU-1: GeForce GTX-1080 Ti 

Founders Edition 11 GB, GPU-2: GeForce GTX-1080 AMP!Extreme Edition 8 GB). Phase 1 training was on the order of 

four to six hours for each network while Phase 2 training took roughly five days. 

The segmentation results of two ISS images are provided in Fig. 3 and the evaluation metrics are provided in Table 3. 

Results show while all networks located the primary target body, UNet-8 produces the most accurate result. Earth 

prediction results are much lower than ISS due to a smaller and coarse training set. To improve network accuracy one may 

include hand crafted annotation labels; increase image volume (i.e. Imagenet); refine hyper parameter tuning; and increase 

input resolution. Furthermore, deeper networks in combination with scale and orientation invariance can be implemented 

to improve accuracy. 

While it is visually evident UNet-8 outperforms the other networks in the IR image, it is not immediately intuitive for 

UNet’s higher performance in the photo image. Superficial observation of Fig. 3 suggest AlexNet better predicts the ISS. 

This discrepancy can be explained by considering all of the classes in the scene since the presented metrics are the average. 

As result, while the true positive of ISS in the UNet image is low, the union of space pixels are also low and cause the 

space IoU to be higher and the average metric in UNet to outperform AlexNet and VGG. The ISS only pixel precision of 

0.63, 0.52, and 0.57 respective to AlexNet, UNet, and VGG confirms UNet as the worst ISS predictor. The above 

discussion highlights the importance in the correct interpretation of the metric results. In actual operations, the ISS 

prediction is far more important than Earth and space; therefore, it is more suitable to develop a weighted accuracy and IoU 

metric based on operational needs. Timing wise, AlexNet-8 is the fastest while the relatively deeper VGG-19 is the most 

computationally expensive. GPU inference can be 12, 37 and 55 times faster than CPU for AlexNet, UNet, and VGG 

respectively. Qualitative results of ISS extraction is provided in Fig. 4. This figure shows the original video sequence, a 

manual segmentation based on edge detection and dilation, all OpenCV 3.2.0 background subtraction methods, the 

adaptive method, and using ConvNets. Contrary to ConvNets, background subtraction is mostly dependent on relative 

motion which can restrict their use. The best ConvNet results are frame 1, 164, and 219; the worst is frame 55. In frame 55, 

the pixel intensity of the ISS and Earth are very close, so a deep network with more distinctive features will perform better. 

Evidently, Fig. 4 shows the deeper VGG-19 model outperforms the other networks. 

 
Table 3: Forward inference timing and semantic segmentation metric comparisons. Timing is an average of all evaluation images, 

semantic segmentation metric is based on the IR and the photo ISS image only. 
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Fig. 4: Background subtraction results, images are taken from STS-135 mission undocking segment with dynamic Earth background 

environment. Frames selected for presentation: start (frame 1), quarter way (frame 55), half way (frame 110), three-quarter way (frame 

164), and end of video sequence (frame 219). Method as follows: level 1-original , level 2-manual , level 3-MOG [26] , level 4- 

MOG2 [27] , level 5-KNN [28] , level 6-GMG [29] , level 7-ADP [24] , level 8-AlexNet-8 , level 9-UNet-8 , level 10-VGG-19 MOG, 

MOG2, KNN, and ADP methods require initialisation on the first frame, GMG method requires 120 frames to initialise. 

(https://youtu.be/iBZKGy-6yJE). 

 

6. Conclusion 

In conclusion, five CNN networks have been evaluated for ISS image extraction from a dynamic background. The 

encoder-decoder mirror image network with skip layers is effective in providing general shape of the target vehicle. Future 

work includes a more comprehensive study of established datasets such as Pascal VOC [47] and ImageNet [30]. 
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