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Abstract – Helly’s Model is a very simple and well-known differential equation that describes the car-following phenomenon very 

accurately with a very intuitive approach. It involves relative distances and velocities between two cars (one in front of the other) which 

are the variables of the model and which are related through constants which give proportionality and consistency to it. Those constants 

are parameters that must be calculated in order to achieve the necessary similarity to the real behaviour that they are modelling. In this 

work, an identification scheme for such estimation is presented. A set of measured data taken from real driving experiments are used to 

calculate the values of such parameters. Then, a simulation of the velocity developed by one of the cars is performed in order to 

compare this simulated behaviour against the data directly measured from that same car. The results show that there the differences of 

both sets of data are minimal, and that the model is very well adjusted. 
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1. Introduction 
The present and future increase in the global amount of cars is a very well-known fact by governments and research 

centres and it is evident to drivers and passengers [1, 2, 3, 4]. This situation has had implications of social and economic 

order [5], legal and regulatory involvements [6], and safety issues [7]. As a complex phenomenon, it has been faced from 

distinct points of view of different knowledge fields. Technologically and scientifically, many mathematical models have 

been suggested in the last century to describe vehicles movement in a road [8, 9, 10, 11, 12, 13]. 

Velocity of the cars is a quantity directly related with the state of traffic and with the time of travel used by drivers to 

move from their origins to their destinations. Other involved variables are present, as density [8, 14], which is a quantity 

used to identify the concentration of cars in a stretch of a road. The higher this value, the higher congestion is present. And, 

at the same time, the space for the cars to move is smaller. The interaction among more vehicles reduce the velocity at 

which they move and the gaps among their physical dimensions [9, 15]. 

 

 
Fig. 1: Car-following variables (Felino CB7 is property of Felino Corpration). 

 

In situations with some level of congestion, the relative velocities and distances between pairs of cars become valuable 

variables to model the physics of what it is happening while the traffic is flowing. In this way it is possible to identify, for 

two adjacent cars in a same lane, one in front (leader L) and other behind (follower  f  ) [16, 17]. This scheme can be 
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spanned to a bigger number of cars, with any one of them performing as a leader of a follower behind of it, but each 

one of the followers becoming a leader of another car directly located behind. 

Car-following models are normally applied to those schemes with two cars as a basic unit of study [18]. One of such 

models is the simple Helly’ model [19]. In spite of there are many others microscopic traffic models which surpass this one 

in accuracy, Helly’s model is intuitive and very easy to use. It is pretty well formulated and it is possible to use it into the 

development of analyses and control designs [20]. Helly’s model includes some parameters to keep the proportionality of 

its variables. In order to obtain a precise enough model, fitted to perform simulations of real scenarios, it is necessary to 

calibrate those quantities [21, 22]. A practical approach to calibrate them is through a parameter identification algorithm 

[23] that uses variables such as relative velocities and relative distances, which can be obtained by proper devices installed 

in a car performing like a follower. 

The main result of this document is the design of such a parameter identification algorithm, from a proper formulation 

of Helly’s model. This model is presented in Section 2. Then, in Section 3, the identification of parameters approach is 

used with this model, where it is explained that sets of experimental data are needed. In Section 4 series of experiments are 

used to obtain those data needed to make the parameter identification algorithm work, giving detail about the way they 

have been carried on. The results of the identification are presented in Section 5, where a simulation of Helly’s model with 

the value of the parameters is compared with real data, showing the accuracy of the process. At the end, some concluding 

remarks are pointed out for this work. 

 

2. Helly’s Model 
The contribution of W. Helly [19] to car-following theory has been a differential equation in which the variation of the 

velocity of the follower car is the sum of a term involving relative velocities of such a car and that leading it, with a term 

that involves the relative distance between them (see Fig. 1). 

 

𝑑𝑣𝑓(𝑡)

𝑑𝑡
=  𝑣[𝑣𝐿(𝑡) − 𝑣𝑓(𝑡)] + 𝑥[𝑥𝐿(𝑡) − 𝑥𝑓(𝑡) − 𝐷(𝑡)] (1) 

 

where: 

𝑣𝐿: velocity of the leader car 

𝑣𝑓: velocity of the follower car 

𝑥𝐿: position of the leader car 

𝑥𝑓: position of the follower car 

𝑥𝑔: gap between cars (bumper to bumper) 

D: safety distance between cars 

𝑣: Sensitivity parameter for relative velocities 

𝑥: Sensitivity parameter for relative distances 

 

As can be seen in Eq. (1), the acceleration of the follower vehicle is positive if the leader vehicle is traveling with 

a higher speed, and it is negative on the contrary, which means that the follower car is catching it up. But such an 

acceleration also depends on the relative position of both cars, summing some additional acceleration if the follower is 

far enough from the leader, but not trespassing a safety distance D, which is observed in reality as a limit distance 

respected by drivers in order to be close enough to the car in front of them but keeping sufficient space to manoeuvre. 

In fact, drivers respond in a different manner for low velocities or high speeds. 
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Fig. 2: Measurement of velocity of the instrumented car and of the distance to the car in front of it(IonRoad App V 1.6.3 Pro is a 

license of iOnRoad Limited [25]). 
 

 
Fig. 3: Loop followed by driver in the experiment. 

 

Those terms are kept proportional by means of two sensitivity parameters. It is assumed that both of them are 

quantities defined in 0 < 𝑣 < 1 and 0 < 𝑥 < 1 respectively. Physically they represent a measure of the follower driver’s 

reaction to the behaviour of the leader, i.e. for those drivers with lower values of  𝑣 and 𝑥 correspond a less reactive 

behaviour, while those drivers with higher values of those parameters have a more reactive mood [10, 17, 22]. 

 

3. Experimental Data 
Experiments with pairs of cars with dedicated devices can be conducted in order to obtain velocities, relative velocities 

and relative positions [17, 21, 22, 24]. There are many ways to design this type of experiments, and many of them are very 

expensive, because they demand material and human resources for better and more realistic results. For this case, one of 

the main goals is to design a set of experiments to be suitable enough to obtain satisfactory results but inexpensive enough 

as far as it can be possible. Only one car is used for experimentation in this case, which behaviour is that of a follower. 

Data to be obtained are velocity 𝑣𝑓(𝑡) and the extent of the gap 𝑥𝑔(𝑡) in front of it with respect to the car in its front while 

moving. An app [25] which uses the camera of a cell phone and a pattern recognition algorithm is used to measure the 

distance to the vehicle ahead (see Fig. 2). Unfortunately, recording of data obtained is not possible from this app, and it 

was necessary to record with a second camera what was viewed through the screen of the first one. 
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A touristic area in Mexico City was chosen to carry on these experiments, on a day with a high attendance of people. 

Congestion due to heavy traffic and small gaps among cars were expected for this event. The idea was to ensure the 

presence of vehicles in front of the instrumented car while driving, behaving as a follower not for only one of the present 

cars in the road, but with many of them, supposing there is no violation to the conditions supported by Eq. (1), because this 

instrumented car do not surpass to any of such vehicles while driving. A loop was stablish to perform the trials and to 

collect data (Fig. 3). 

As normally occurs, some trials were dismissed because some incidences happened: lack of familiarity of the zone and 

its affectation to the driver, camera positioning needing a better adjustment, sun light directly entering the lens and 

affecting measurements, and other similar details. At the end, four sets of data of four different trials were selected as those 

suitable to process. 

 

4. Parameter Identification Scheme 
Helly’s model (1) can be rewritten as Eq. (2) shows 

 

𝑑𝑣𝑓(𝑡)

𝑑𝑡
=  𝑣𝑣𝑅(𝑡) + 𝑥𝑥𝑅(𝑡) + 𝑑𝐷(𝑡) (2) 

where: 

𝑣𝑅 = 𝑣𝐿(𝑡) − 𝑣𝑓(𝑡) 

𝑥𝑅 = 𝑥𝐿(𝑡) − 𝑥𝑓(𝑡) ≈ 𝑥𝑔 

 

An alternative form to Eq. (2) is Eq. (3) 

 

𝑑𝑣𝑓(𝑡)

𝑑𝑡
=  [𝑣𝑅(𝑡) 𝑥𝑅(𝑡) 𝐷(𝑡)] [

𝑣

𝑥

𝑑

] (3) 

 

Eq. (3) can be easily transform in the form depicted by Eq. (4) 

 

𝑣𝑓(𝑡 + ∆𝑡) − 𝑣𝑓

∆𝑡
≅ [𝑣𝑅(𝑡) 𝑥𝑅(𝑡) 𝐷(𝑡)] [

𝑣

𝑥

𝑑

] (4) 

 

A classical scheme of identification of parameters [23] tries to minimize the error 𝑒(𝑡) defined by Eq. (5) 

 

 𝑒(𝑡) = 𝑆(𝑡 + ∆𝑡) − 𝜑(𝑡)𝜃(𝑡) (5) 

where: 

𝑆(𝑡) = [𝑣𝑓(𝑡 + ∆𝑡) − 𝑣𝑓(𝑡)] ∆𝑡⁄  

𝜑(𝑡) = [𝑣𝑅(𝑡) 𝑥𝑅(𝑡) 𝐷(𝑡)] 
𝜃(𝑡) = [𝑣 𝑥 𝑑]𝑇 

Eq. (5) is a calculation of how different are both sides of Eq. (4), and it is needed to look for 𝑒(𝑡) → 0 as  𝑡 → ∞. 

Ioannou and Sun [23] describe an iterative method to ensure that 𝜃(𝑡) converges through 

 

𝜃(𝑡) = 𝜃(𝑡 − ∆𝑡) + 𝛼𝑃(𝑡 − ∆𝑡)𝜑(𝑡)[1 + 𝜑𝑇(𝑡)𝑃(𝑡 − ∆𝑡)𝜑(𝑡)]−1𝑒(𝑡) (6) 

 

where 𝛼 is a gain that affects the velocity of convergence of the second term of (6), while P(𝑡) is the covariance matrix of 

𝜑(𝑡). Such a matrix of covariance is described by Eq. (7) 
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𝑃(𝑡) = [𝑃−1(𝑡0) + 𝜑𝑇(𝑡)𝜑(𝑡)]−1 (7) 

 

5. Results and Discussion 
5.1.  Values 

For those cases where velocity 𝑣𝑓(𝑡) or relative position 𝑥𝑅(𝑡) were missing, linear interpolation or extrapolation were 

used. However, from four distinct trials, only two of them were considered complete enough in duration and data collected. 

 

  
(a) Identification Evolution, trial 1 (b) Identification Error, trial 1 

 
 

(c) Identification Evolution, trial 2 (d) Identification Error, trial 2 

Fig. 4: Identification for 𝑣, 𝑥, and 𝑑 for both experimental trials. 

 

Identification algorithm presented in Section 3 was fed with those data sets, each one having 96 triplets (t, 𝑣𝑓(𝑡), 𝑥𝑅) 

for a duration of 1 minute and 36 seconds. At the same time, the value of the error 𝑒(𝑡), as described by Eq. (5), is 

calculated in order to watch the convergence of this scheme. Fig. 4 shows the evolution of the identification algorithm for 

both sets of data. Even though the parameters exhibit much variation, the error 𝑒(𝑡) of the performance, presented in Fig. 

4b, shows a good convergence. This rather present these parameters as not entirely constants as calculations from data 

show. However, it is possible to see that there is a tendency to some average value in each one of these three parameters. In 
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this way, it has been possible to calculate 𝑣 = 0.645, 𝑥 = 0.212 and 𝑑 = −0.590, for a first trial. For a 

second trial, Fig. 4c depicts the evolution of the algorithm when it calculates 𝑣, 𝑥 and 𝑑. In this case convergence 

is also achieved, even though there are some times where it seems jeopardized, as Fig. 4d shows. For this trial 

𝑣 = 0.092, 𝑥 = 0.236 and 𝑑 = −0.766. 
As expected, all this values are in the interval (0, 1). Another important detail to take into account is the sign of 

𝑑 which has been identified as negative, in close agreement with the formulation of Helly’s model as described by 

Eq. (1) and Eq. (2), and in full consistency with the identification scheme that appears in Eq. (3). 

 

5.2. Simulations 
The model in Eq. (1) is now provided with those average  values calculated by the identification algorithm. To 

complete the values of the variables needed, the velocity of the leader car 𝑣𝐿 is calculated by Eq. (8) 

 

𝑣𝐿(𝑡) = 𝑥̇𝑅(𝑡) + 𝑣𝑓(𝑡) (8) 

with 

𝑥̇𝑅(𝑡) =
𝑥𝑅(𝑡 + ∆𝑡) − 𝑥(𝑡)

∆𝑡
 (9) 

 

With those described values, and a fix 𝐷 = 3m, simulations are performed, trying to emulate the behaviour of the 

car in each of the two trials (see Fig. 5). Fig. 5a shows the velocity 𝑣𝑓𝑚(𝑡) measured from the instrumented car (solid 

blue line) as well as that 𝑣𝑓𝑠(𝑡) obtained from the calculation (dashed black line) of this same variable from Eq. (1). It 

can be noticed that one trajectory is very close to the other, even though the discrepancies. Fig. 5b shows a measuring 

of the difference between two variables through the calculation of the relative error, as defined by Eq. (10) 

 

𝐸𝑅(𝑡) =
𝑣𝑓𝑚(𝑡) − 𝑣𝑓𝑠(𝑡)

𝑣𝑓𝑠(𝑡)
 (10) 

 

The evolution of 𝐸𝑅(𝑡) in Fig. 5b shows a very big skip little after t = 80 s. This is caused by zero velocity values 

𝑣𝑓𝑚 = 0, because during this experimental trial the car came to stop due to traffic. This event affect the determinant of 

the quotient in Eq. (10), causing that big negative set of values of 𝐸𝑅(𝑡). However, once in the move again, the 

behaviour of this variable represents the good match of both velocities, as it can be watch in the respective figure. 

For a second trail, Fig. 5c compares 𝑣𝑓𝑚 and 𝑣𝑓𝑠 with less accuracy. This could be expected if attention is return 

to the results obtained for the set of  values that resulted for this trial and the observations made in Subsection 5.1. 

However, in this case the relative error 𝐸𝑅(𝑡) between these two data sets is more steady as Fig. 5d shows, and 

because fortunately the instrumented car never came to stop for this trial, as it was the case for the first event.  

The way in which data were collected includes, as mentioned early, important amounts of disturbances and noise 

and a lack of more accuracy. However, it can be noticed that the identification, as well as the simulations, are behaving 

very well in spite of such flaws, which can be surpassed if better devices are used. We stress, on the other hand, that 

the identification algorithm is quite stable and useful to perform this calibration. 

 

6. Conclusion 
To be operative, those parameters that appear on Hellys model must be calibrated. In this work, a one-car 

experiment has been developed to obtain those necessary data sets to perform the identification needed. This 

experiment needed the minimal costs in material and human resources. The identification has obtained  values for 

Helly’s model which later have been used in a simulation, together with the other data of variables like the velocity of 

the car used by the experiment, and the relative distance to the other vehicles that subsequently were in front of the 

instrumented car. That simulation resulted in a similar trajectory of the simulated velocity with respect to the measured 
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velocity. Even though this results are quite interesting from the point of view of calibration, they lack of precision which is 

possible to improve by using more accurate measuring devices. 

  
(a) Comparison between measured and simulated vf , trial 1 (b) Relative error between measured and simulated vf , trial 1 

  
(c) Comparison between measured and simulated vf , trial 1 (d) Relative error between measured and simulated vf , trial 2 

Fig. 5: Simulation performed with the sets of data obtained from the experiments and the parameter identification. 
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